15 research outputs found

    Implant augmentation: Adding bone cement to improve the treatment of osteoporotic distal femur fractures:A biomechanical study using human cadaver bones

    Full text link
    The increasing problems in the field of osteoporotic fracture fixation results in specialized implants as well as new operation methods, for example, implant augmentation with bone cement. The aim of this study was to determine the biomechanical impact of augmentation in the treatment of osteoporotic distal femur fractures. Seven pairs of osteoporotic fresh frozen distal femora were randomly assigned to either an augmented or nonaugmented group. In both groups, an Orthopaedic Trauma Association 33 A3 fractures was fixed using the locking compression plate distal femur and cannulated and perforated screws. In the augmented group, additionally, 1 mL of polymethylmethacrylate cement was injected through the screw. Prior to mechanical testing, bone mineral density (BMD) and local bone strength were determined. Mechanical testing was performed by cyclic axial loading (100 N to 750 N + 0.05N/cycle) using a servo-hydraulic testing machine. As a result, the BMD as well as the axial stiffness did not significantly differ between the groups. The number of cycles to failure was significantly higher in the augmented group with the BMD as a significant covariate. In conclusion, cement augmentation can significantly improve implant anchorage in plating of osteoporotic distal femur fractures

    Does Cement Augmentation of the Sacroiliac Screw Lead to Superior Biomechanical Results for Fixation of the Posterior Pelvic Ring? A Biomechanical Study

    Full text link
    Background and Objectives: The stability of the pelvic ring mainly depends on the integrity of its posterior part. Percutaneous sacroiliac (SI) screws are widely implanted as standard of care treatment. The main risk factors for their fixation failure are related to vertical shear or transforaminal sacral fractures. The aim of this study was to compare the biomechanical performance of fixations using one (Group 1) or two (Group 2) standard SI screws versus one SI screw with bone cement augmentation (Group 3). Materials and Methods: Unstable fractures of the pelvic ring (AO/OTA 61-C1.3, FFP IIc) were simulated in 21 artificial pelvises by means of vertical osteotomies in the ipsilateral anterior and posterior pelvic ring. A supra-acetabular external fixator was applied to address the anterior fracture. All specimens were tested under progressively increasing cyclic loading until failure, with monitoring by means of motion tracking. Fracture site displacement and cycles to failure were evaluated. Results: Fracture displacement after 500 cycles was lowest in Group 3 (0.76 cm [0.30] (median [interquartile range, IQR])) followed by Group 1 (1.42 cm, [0.21]) and Group 2 (1.42 cm [1.66]), with significant differences between Groups 1 and 3, p = 0.04. Fracture displacement after 1000 cycles was significantly lower in Group 3 (1.15 cm [0.37]) compared to both Group 1 (2.19 cm [2.39]) and Group 2 (2.23 cm [3.65]), p ≤ 0.04. Cycles to failure (Group 1: 3930 ± 890 (mean ± standard deviation), Group 2: 3676 ± 348, Group 3: 3764 ± 645) did not differ significantly between the groups, p = 0.79. Conclusions: In our biomechanical setup cement augmentation of one SI screw resulted in significantly less displacement compared to the use of one or two SI screws. However, the number of cycles to failure was not significantly different between the groups. Cement augmentation of one SI screw seems to be a useful treatment option for posterior pelvic ring fixation, especially in osteoporotic bone

    Biomechanical Comparison of Five Fixation Techniques for Unstable Fragility Fractures of the Pelvic Ring

    Full text link
    Background: Incidence of pelvic ring fractures has increased over the past four decades, especially after low-impact trauma—classified as fragility fractures of the pelvis (FFP). To date, there is a lack of biomechanical evidence for the superiority of one existing fixation technique over another. An FFP type IIc was simulated in 50 artificial pelvises, assigned to 5 study groups: Sacroiliac (SI) screw, SI screw plus supra-acetabular external fixator, SI screw plus plate, SI screw plus retrograde transpubic screw, or S1/S2 ala–ilium screws. The specimens were tested under progressively increasing cyclic loading. Axial stiffness and cycles to failure were analysed. Displacement at the fracture sites was evaluated, having been continuously captured via motion tracking. Results: Fixation with SI screw plus plate and SI screw plus retrograde transpubic screw led to higher stability than the other tested techniques. The S1/S2 ala–ilium screws were more stable than the SI screw or the SI screw plus external fixator. Conclusions: In cases with displaced fractures, open reduction and plate fixation provides the highest stability, whereas in cases where minimally invasive techniques are applicable, a retrograde transpubic screw or S1/S2 ala–ilium screws can be considered as successful alternative treatment options

    Is Anterior Plating Superior to the Bilateral Use of Retrograde Transpubic Screws for Treatment of Straddle Pelvic Ring Fractures? A Biomechanical Investigation

    Full text link
    Background: Fractures of the four anterior pubic rami are described as “straddle fractures”. The aim of this study was to compare biomechanical anterior plating (group 1) versus the bilateral use of retrograde transpubic screws (group 2). Methods: A straddle fracture was simulated in 16 artificial pelvises. All specimens were tested under progressively increasing cyclic loading, with monitoring by means of motion tracking. Results: Axial stiffness did not differ significantly between the groups, p = 0.88. Fracture displacement after 1000–4000 cycles was not significantly different between the groups, p ≥ 0.38; however, after 5000 cycles it was significantly less in the retrograde transpubic screw group compared to the anterior plating group, p = 0.04. No significantly different flexural rotations were detected between the groups, p ≥ 0.32. Moreover, no significant differences were detected between the groups with respect to their cycles to failure and failure loads, p = 0.14. Conclusion: The results of this biomechanical study reveal less fracture displacement in the retrograde transpubic screw group after long-term testing with no further significant difference between anterior plating and bilateral use of retrograde transpubic screws. While the open approach using anterior plating allows for better visualization of the fracture site and open reduction, the use of bilateral retrograde transpubic screws, splinting the fracture, presents a minimally invasive and biomechanically stable technique

    Axial and shear pullout forces of composite, porcine and human metatarsal and cuboid bones

    No full text
    Objectives: The varying mechanical properties of human bone have influence on the study results. Pullout and shear forces of human bone were compared to different substitutes to evaluate their suitability for biomechanical studies. Methods: After bone mineral density (BMD) determination, axial pullout tests were performed with cortical 3.5 mm nonlocking (NL) and 2.7 mm head locking (HL) screws on human, porcine and polyurethane composite bones. Porcine and human constructs were additionally loaded in shear direction. Results: Apparent BMD was significantly lower in osteoporotic (159 mgHA/ccm ± 56) and nonosteoporotic (229 mgHA/ccm ± 25) human bone than that in porcine bone (325 mgHA/ccm ± 42; p < 0.01). Axial construct stiffness and ultimate pullout force of porcine bone (NL: 666N/mm ± 226, 910N ± 140; HL: 309N/mm ± 88, 744N ± 185) was significantly different from composite bone (NL: 1284N/mm ± 161; 1175N ± 116; HL: 1241N/mm ± 172, 1185N ± 225) and osteoporotic human bone (NL: 204N/mm ± 121, 185N ± 113; HL: 201N/mm ± 65; 189N ± 58) but not from nonosteoporotic human bone (NL: 620N/mm ± 205, 852N ± 281; HL: 399N/mm ± 224; 567N ± 242). Porcine bone exhibited an ultimate shear force (NL: 278N ± 99; HL: 431N ± 155) comparable to nonosteoporotic human bone (NL: 207 ± 68: HL: 374N ± 137). Conclusion: Screw pullout and shear forces of porcine bone are close to nonosteoporotic human bone. The translational potential of this article: Human bone specimens used in biomechanical studies are predominantly of osteoporotic bone quality. Conclusions on nonosteoporotic human bone behaviour are difficult. Alternatives such as porcine bone and composite bone were investigated, and it could be shown that screw pullout and screw shear forces of porcine bone are close to nonosteoporotic human bone. Keywords: Biomechanical testing, Bone substitute, Bone quality, Composite bone, Human bone, Porcine bon
    corecore