4 research outputs found

    Ultrathin polycrystalline 6,13-Bis(triisopropylsilylethynyl)-pentacene films

    Get PDF
    Ultrathin (<6 nm) polycrystalline films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-P) are deposited with a two-step spin-coating process. The influence of spin-coating conditions on morphology of the resulting film was examined by atomic force microscopy. Film thickness and RMS surface roughness were in the range of 4.0-6.1 and 0.6-1.1 nm, respectively, except for small holes. Polycrystalline structure was confirmed by grazing incidence x-ray diffraction measurements. Near-edge x-ray absorption fine structure measurements suggested that the plane through aromatic rings of TIPS-P molecules was perpendicular to the substrate surface. (C) 2014 American Vacuum Societyclos

    Air-Exposure-Induced Gas-Molecule Incorporation into Spiro-MeOTAD Films

    No full text
    Combined photoemission and charge-transport property studies of the organic hole transport material 2,2′,7,7′-tetrakis­(<i>N</i>,<i>N</i>-di-<i>p</i>-methoxyphenylamine)-9,9′-spirobifluorene (spiro-MeOTAD) under air exposure and controlled environments of O<sub>2</sub>, H<sub>2</sub>O + N<sub>2</sub>, and N<sub>2</sub> (1 atm and under dark conditions) reveal the incorporation of gas molecules causing a decrease in charge mobility. Ultraviolet photoelectron spectroscopy shows the Fermi level shifts toward the highest occupied molecular orbital of spiro-MeOTAD when exposed to air, O<sub>2</sub>, and H<sub>2</sub>O resembling p-type doping. However, no traces of oxidized spiro-MeOTAD<sup>+</sup> are observed by X-ray photoelectron spectroscopy (XPS) and UV–visible spectroscopy. The charge-transport properties were investigated by fabricating organic field-effect transistors with the 10 nm active layer at the semiconductor–insulator interface exposed to different gases. The hole mobility decreases substantially upon exposure to air, O<sub>2</sub>, and H<sub>2</sub>O. In the case of N<sub>2</sub>, XPS reveals the incorporation of N<sub>2</sub> molecules into the film, but the decrease in the hole mobility is much smaller

    Flat-Lying Semiconductor-Insulator Interfacial Layer in DNTT Thin Films

    No full text
    The molecular order of organic semiconductors at the gate dielectric is the most critical factor determining carrier mobility in thin film transistors since the conducting channel forms at the dielectric interface. Despite its fundamental importance, this semiconductor-insulator interface is not well understood, primarily because it is buried within the device. We fabricated dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) thin film transistors by thermal evaporation in vacuum onto substrates held at different temperatures and systematically correlated the extracted charge mobility to the crystal grain size and crystal orientation. As a result, we identify a molecular layer of flat-lying DNTT molecules at the semiconductor-insulator interface. It is likely that such a layer might form in other material systems as well, and could be one of the factors reducing charge transport. Controlling this interfacial flat-lying layer may raise the ultimate possible device performance for thin film devicesclos

    Measurements of the Total and Differential Higgs Boson Production Cross Sections Combining the H??????? and H???ZZ*???4??? Decay Channels at s\sqrt{s}=8??????TeV with the ATLAS Detector

    No full text
    Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3~fb1^{-1} of pppp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8\sqrt{s} = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured HγγH \rightarrow \gamma \gamma and HZZ4H \rightarrow ZZ ^{*}\rightarrow 4\ell event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σppH=33.0±5.3(stat)±1.6(sys)pb\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}. The measurements are compared to state-of-the-art predictions.Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3  fb-1 of pp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8  TeV and recorded by the ATLAS detector. Cross sections are obtained from measured H→γγ and H→ZZ*→4ℓ event yields, which are combined accounting for detector efficiencies, fiducial acceptances, and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σpp→H=33.0±5.3 (stat)±1.6 (syst)  pb. The measurements are compared to state-of-the-art predictions.Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb1^{-1} of pppp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8\sqrt{s} = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured HγγH \rightarrow \gamma \gamma and HZZ4H \rightarrow ZZ ^{*}\rightarrow 4\ell event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σppH=33.0±5.3(stat)±1.6(sys)pb\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}. The measurements are compared to state-of-the-art predictions
    corecore