23 research outputs found

    The coupling between pulsation and mass loss in massive stars

    Full text link
    To what extent can pulsational instabilities resolve the mass-loss problem of massive stars? How important is pulsation in structuring and modulating the winds of these stars? What role does pulsation play in redistributing angular momentum in massive stars? Although I cannot offer answers to these questions, I hope at the very least to explain how they come to be asked.Comment: 12 pages, 1 figure, to appear in proceedings of "Unsolved Problems in Stellar Physics" conference (Cambridge, UK, July 2007

    Mass loss and supernova progenitors

    Full text link
    We first discuss the mass range of type IIP SN progenitors and how the upper and lower limits impose interesting constraints on stellar evolution. Then we discuss the possible implications of two SNe, 2002ap and 2006jc, for Wolf-Rayet star mass-loss rates and long Gamma-ray bursts.Comment: 7 pages, 3 figures, to appear in the Conference Proceedings of "Unsolved Problems in Stellar Astrophysics

    A Search for Pulsation in Very Low-mass Stars and Brown Dwarfs

    Get PDF
    Brown dwarfs and very low-mass stars constitute a crucial link between the intertwined processes of star formation and planet formation. To date, however, observational methods to uncover their formation mechanism or determine important properties such as mass and age have been lacking. Pulsation powered by deuterium burning in brown dwarfs and very low-mass stars is a newly suggested phenomenon that offers unprecedented opportunities to probe the interiors and evolution of these objects. We report on a photometric campaign to search for low-amplitude pulsations among young star-cluster members using a number of telescopes

    Forecasting Seismic Signatures of Stellar Magnetic Activity

    Full text link
    For the Sun, a tight correlation between various activity measures and oscillation frequencies is well documented. For other stars, we have abundant data on magnetic activity and its changes but not yet on its seismic signature. A prediction of the activity induced frequency changes in stars based on scaling the solar relations is presented. This seismic signature of the activity should be measurable in the data expected within few years.Comment: 8 pages, 3 figures, to appear in proceedings of "Unsolved Problems in Stellar Physics" conference (Cambridge, UK, July 2007

    A practical model of convective dynamics for stellar evolution calculations

    Full text link
    Turbulent motions in the interior of a star play an important role in its evolution, since they transport chemical species, thermal energy and angular momentum. Our overall goal is to construct a practical turbulent closure model for convective transport that can be used in a multi-dimensional stellar evolution calculation including the effects of rotation, shear and magnetic fields. Here, we focus on the first step of this task: capturing the well-known transition from radiative heat transport to turbulent convection with and without rotation, as well as the asymptotic relationship between turbulent and radiative transport in the limit of large Rayleigh number. We extend the closure model developed by Ogilvie (2003) and Garaud and Ogilvie (2005) to include heat transport and compare it with experimental results of Rayleigh-Benard convection.Comment: Conference proceeding for poster at conference "Unsolved problems in Stellar Physics

    The Impact of Rotation on the Evolution of Low-Mass Stars

    Full text link
    High precision photometry and spectroscopy of low-mass stars reveal a variety of properties standard stellar evolution cannot predict. Rotation, an essential ingredient of stellar evolution, is a step towards resolving the discrepancy between model predictions and observations. The first rotating stellar model, continuously tracing a low-mass star from the pre-main sequence onto the horizontal branch, is presented. The predicted luminosity functions of globular clusters and surface rotation velocities on the horizontal branch are discussed.Comment: 5 pages, 6 figures, to be published in the Proceedings of the Conference 'Unsolved Problems in Stellar Physics', Cambridge, 2-6 July 200

    Confinement of the Sun's interior magnetic field: some exact boundary-layer solutions

    Full text link
    High-latitude laminar confinement of the Sun's interior magnetic field is shown to be possible, as originally proposed by Gough and McIntyre (1998) but contrary to a recent claim by Brun and Zahn (A&A 2006). Mean downwelling as weak as 2x10^-6cm/s -- gyroscopically pumped by turbulent stresses in the overlying convection zone and/or tachocline -- can hold the field in advective-diffusive balance within a confinement layer of thickness scale ~ 1.5Mm ~ 0.002 x (solar radius) while transmitting a retrograde torque to the Ferraro-constrained interior. The confinement layer sits at the base of the high-latitude tachocline, near the top of the radiative envelope and just above the `tachopause' marking the top of the helium settling layer. A family of exact, laminar, frictionless, axisymmetric confinement-layer solutions is obtained for uniform downwelling in the limit of strong rotation and stratification. A scale analysis shows that the flow is dynamically stable and the assumption of laminar flow realistic. The solution remains valid for downwelling values of the order of 10^-5cm/s but not much larger. This suggests that the confinement layer may be unable to accept a much larger mass throughput. Such a restriction would imply an upper limit on possible internal field strengths, perhaps of the order of hundreds of gauss, and would have implications also for ventilation and lithium burning. The solutions have interesting chirality properties not mentioned in the paper owing to space restrictions, but described at http://www.atmos-dynamics.damtp.cam.ac.uk/people/mem/papers/SQBO/solarfigure.htmlComment: 6 pages, 3 figures, to appear in conference proceedings: Unsolved Problems in Stellar Physic

    The effect of different opacity data and chemical element mixture on the Petersen diagram

    Full text link
    The Petersen diagram is a frequently used tool to constrain model parameters such as metallicity of radial double-mode pulsators. In this diagram the period ratio of the radial first overtone to the fundamental mode, P_1/P_0, is plotted against the period of the fundamental mode. The period ratio is sensitive to the chemical composition as well as to the rotational velocity of a star. In the present study we compute stellar pulsation models to demonstrate the sensitivity of the radial period ratio to the opacity data (OPAL and OP tables) and we also examine the effect of different relative abundances of heavy elements. We conclude that the comparison with observed period ratios could be used successfully to test the opacity data.Comment: 5 pages, 5 figures, 1 table; to be published in the Proceedings of the Conference 'Unsolved Problems in Stellar Physics', Cambridge, 2-6 July 200
    corecore