8 research outputs found

    Nonlinear excitation of low-n harmonics in reduced magnetohydrodynamic simulations of edge-localized modes

    Full text link
    Nonlinear simulations of the early ELM phase based on a typical type-I ELMy ASDEX Upgrade discharge have been carried out using the reduced MHD code JOREK. The analysis is focused on the evolution of the toroidal Fourier spectrum. It is found that during the nonlinear evolution, linearly subdominant low-n Fourier components, in particular the n = 1, grow to energies comparable with linearly dominant harmonics. A simple model is developed, based on the idea that energy is transferred among the toroidal harmonics via second order nonlinear interaction. The simple model reproduces and explains very well the early nonlinear evolution of the toroidal spectrum in the JOREK simulations. Furthermore, it is shown for the n = 1 harmonic, that its spatial structure changes significantly during the transition from linear to nonlinearly driven growth. The rigidly growing structure of the linearly barely unstable n = 1 reaches far into the plasma core. In contrast, the nonlinearly driven n = 1 has a rigidly growing structure localized at the plasma edge, where the dominant toroidal harmonics driving the n = 1 are maximal and in phase. The presented quadratic coupling model might explain the recent experimental observation of strong low-n components in magnetic measurements [Wenninger et al., Non-linear magnetic perturbations during edge localized modes in TCV dominated by low n mode components, submitted to Nuclear Fusion]

    Testing of the new JOREK stellarator-capable model in the tokamak limit

    Full text link
    In preparation for extending the JOREK nonlinear MHD code to stellarators, a hierarchy of stellarator-capable reduced and full MHD models has been derived and tested. The derivation was presented at the EFTC 2019 conference. Continuing this line of work, we have implemented the reduced MHD model (arXiv:1907.12486) as well as an alternative model which was newly derived using a different set of projection operators for obtaining the scalar momentum equations from the full MHD vector momentum equation. With the new operators, the reduced model matches the standard JOREK reduced models for tokamaks in the tokamak limit and conserves energy exactly, while momentum conservation is less accurate than in the original model whenever field-aligned flow is present.Comment: 23 pages, 1 table, 7 figures. Submitted to Journal of Plasma Physic

    Numerical study of tearing mode seeding in tokamak X-point plasma

    Get PDF
    A detailed understanding of island seeding is crucial to avoid (N)TMs and their negative consequences like confinement degradation and disruptions. In the present work, we investigate the growth of 2/1 islands in response to magnetic perturbations. Although we use externally applied perturbations produced by resonant magnetic perturbation (RMP) coils for this study, results are directly transferable to island seeding by other MHD instabilities creating a resonant magnetic field component at the rational surface. Experimental results for 2/1 island penetration from ASDEX Upgrade are presented extending previous studies. Simulations are based on an ASDEX Upgrade L-mode discharge with low collisionality and active RMP coils. Our numerical studies are performed with the 3D, two fluid, non-linear MHD code JOREK. All three phases of mode seeding observed in the experiment are also seen in the simulations: first a weak response phase characterized by large perpendicular electron flow velocities followed by a fast growth of the magnetic island size accompanied by a reduction of the perpendicular electron velocity, and finally the saturation to a fully formed island state with perpendicular electron velocity close to zero. Thresholds for mode penetration are observed in the plasma rotation as well as in the RMP coil current. A hysteresis of the island size and electron perpendicular velocity is observed between the ramping up and down of the RMP amplitude consistent with an analytically predicted bifurcation. The transition from dominant kink/bending to tearing parity during the penetration is investigated

    Assessment of synaptic loss in mouse models of β-amyloid and tau pathology using [18F]UCB-H PET imaging

    Get PDF
    Objective: In preclinical research, the use of [F-18]Fluorodesoxyglucose (FDG) as a biomarker for neuro-degeneration may induce bias due to enhanced glucose uptake by immune cells. In this study, we sought to investigate synaptic vesicle glycoprotein 2A (SV2A) PET with [F-18]UCB-H as an alternative preclinical biomarker for neurodegenerative processes in two mouse models representing the pathological hallmarks of Alzheimer's disease (AD). Methods: A total of 29 PS2APP, 20 P301S and 12 wild-type mice aged 4.4 to 19.8 months received a dynamic [F-18]UCB-H SV2A-PET scan (14.7 +/- 1.5 MBq) 0-60 min post injection. Quantification of tracer uptake in cortical, cerebellar and brainstem target regions was implemented by calculating relative volumes of distribution (V-T) from an image-derived-input-function (IDIF). [F-18]UCB-H binding was compared across all target regions between transgenic and wild-type mice. Additional static scans were performed in a subset of mice to compare [F-18]FDG and [F-18]GE180 (18 kDa translocator protein tracer as a surrogate for microglial activation) standardized uptake values (SUV) with [F-18]UCB-H binding at different ages. Following the final scan, a subset of mouse brains was immunohistochemically stained with synaptic markers for gold standard validation of the PET results. Results: [F-18]UCB-H binding in all target regions was significantly reduced in 8-months old P301S transgenic mice when compared to wild-type controls (temporal lobe: p = 0.014;cerebellum: p = 0.0018;brainstem: p = 0.0014). Significantly lower SV2A tracer uptake was also observed in 13-months (temporal lobe: p = 0.0080;cerebellum: p = 0.006) and 19-months old (temporal lobe: p = 0.0042;cerebellum: p = 0.011) PS2APP transgenic versus wild-type mice, whereas the brainstem revealed no significantly altered [F-18]UCB-H binding. Immunohistochemical analyses of post-mortem mouse brain tissue confirmed the SV2A PET findings. Correlational analyses of [F-18]UCB-H and [F-18]FDG using Pearson's correlation coefficient revealed a significant negative association in the PS2APP mouse model (R = -0.26, p = 0.018). Exploratory analyses further stressed microglial activation as a potential reason for this inverse relationship, since [F-18]FDG and [F-18]GE180 quantification were positively correlated in this cohort (R = 0.36, p = 0.0076). Conclusion: [F-18]UCB-H reliably depicts progressive synaptic loss in PS2APP and P301S transgenic mice, potentially qualifying as a more reliable alternative to [F-18]FDG as a biomarker for assessment of neuro-degeneration in preclinical research
    corecore