23 research outputs found

    Analysis of bi-atrial function using CMR feature tracking and long-axis shortening approaches in patients with diastolic dysfunction and atrial fibrillation.

    Get PDF
    OBJECTIVES Atrial function can be assessed using advancing cardiovascular magnetic resonance (CMR) post-processing methods: atrial feature tracking (FT) strain analysis or a long-axis shortening (LAS) technique. This study aimed to first compare the two FT and LAS techniques in healthy individuals and cardiovascular patients and then investigated how left (LA) and right atrial (RA) measurements are related to the severity of diastolic dysfunction or atrial fibrillation. METHODS Sixty healthy controls and 90 cardiovascular disease patients with coronary artery disease, heart failure, or atrial fibrillation, underwent CMR. LA and RA were analyzed for standard volumetry as well as for myocardial deformation using FT and LAS for the different functional phases (reservoir, conduit, booster). Additionally, ventricular shortening and valve excursion measurements were assessed with the LAS module. RESULTS The measurements for each of the LA and RA phases were correlated (p < 0.05) between the two approaches, with the highest correlation coefficients occurring in the reservoir phase (LA: r = 0.83, p < 0.01, RA: r = 0.66, p < 0.01). Both methods demonstrated reduced LA (FT: 26 ± 13% vs 48 ± 12%, LAS: 25 ± 11% vs 42 ± 8%, p < 0.01) and RA reservoir function (FT: 28 ± 15% vs 42 ± 15%, LAS: 27 ± 12% vs 42 ± 10%, p < 0.01) in patients compared to controls. Atrial LAS and FT decreased with diastolic dysfunction and atrial fibrillation. This mirrored ventricular dysfunction measurements. CONCLUSION Similar results were generated for bi-atrial function measurements between two CMR post-processing approaches of FT and LAS. Moreover, these methods allowed for the assessment of incremental deterioration of LA and RA function with increasing left ventricular diastolic dysfunction and atrial fibrillation. A CMR-based analysis of bi-atrial strain or shortening discriminates patients with early-stage diastolic dysfunction prior to the presence of compromised atrial and ventricular ejection fractions that occur with late-stage diastolic dysfunction and atrial fibrillation. KEY POINTS • Assessing right and left atrial function with CMR feature tracking or long-axis shortening techniques yields similar measurements and could potentially be used interchangeably based on the software capabilities of individual sites. • Atrial deformation and/or long-axis shortening allow for early detection of subtle atrial myopathy in diastolic dysfunction, even when atrial enlargement is not yet apparent. • Using a CMR-based analysis to understand the individual atrial-ventricular interaction in addition to tissue characteristics allows for a comprehensive interrogation of all four heart chambers. In patients, this could add clinically meaningful information and potentially allow for optimal therapies to be chosen to better target the dysfunction

    Assessment of Myocardial Function During Blood Pressure Manipulations Using Feature Tracking Cardiovascular Magnetic Resonance

    Get PDF
    Background: Coronary autoregulation is a feedback system, which maintains near-constant myocardial blood flow over a range of mean arterial pressure (MAP). Yet in emergency or peri-operative situations, hypotensive or hypertensive episodes may quickly arise. It is not yet established how rapid blood pressure changes outside of the autoregulation zone (ARZ) impact left (LV) and right ventricular (RV) function. Using cardiovascular magnetic resonance (CMR) imaging, measurements of myocardial tissue oxygenation and ventricular systolic and diastolic function can comprehensively assess the heart throughout a range of changing blood pressures. Design and methods: In 10 anesthetized swine, MAP was varied in steps of 10–15 mmHg from 29 to 196 mmHg using phenylephrine and urapidil inside a 3-Tesla MRI scanner. At each MAP level, oxygenation-sensitive (OS) cine images along with arterial and coronary sinus blood gas samples were obtained and blood flow was measured from a surgically implanted flow probe on the left anterior descending coronary artery. Using CMR feature tracking-software, LV and RV circumferential systolic and diastolic strain parameters were measured from the myocardial oxygenation cines. Results: LV and RV peak strain are compromised both below the lower limit (LV: Δ1.2 ± 0.4%, RV: Δ4.4 ± 1.2%, p < 0.001) and above the upper limit (LV: Δ2.1 ± 0.4, RV: Δ5.4 ± 1.4, p < 0.001) of the ARZ in comparison to a baseline of 70 mmHg. LV strain demonstrates a non-linear relationship with invasive and non-invasive measures of oxygenation. Specifically for the LV at hypotensive levels below the ARZ, systolic dysfunction is related to myocardial deoxygenation (β = −0.216, p = 0.036) in OS-CMR and both systolic and diastolic dysfunction are linked to reduced coronary blood flow (peak strain: β = −0.028, p = 0.047, early diastolic strain rate: β = 0.026, p = 0.002). These relationships were not observed at hypertensive levels. Conclusion: In an animal model, biventricular function is compromised outside the coronary autoregulatory zone. Dysfunction at pressures below the lower limit is likely caused by insufficient blood flow and tissue deoxygenation. Conversely, hypertension-induced systolic and diastolic dysfunction points to high afterload as a cause. These findings from an experimental model are translatable to the clinical peri-operative environment in which myocardial deformation may have the potential to guide blood pressure management, in particular at varying individual autoregulation thresholds

    Introducing a free-breathing MRI method to assess peri-operative myocardial oxygenation and function: A volunteer cohort study.

    Get PDF
    BACKGROUND Induction of general anaesthesia has many potential triggers for peri-operative myocardial ischaemia including the acute disturbance of blood gases that frequently follows alterations in breathing and ventilation patterns. Free-breathing oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR) imaging may provide the opportunity to continuously quantify the impact of such triggers on myocardial oxygenation. OBJECTIVE To investigate the impact of breathing patterns that simulate induction of general anaesthesia on myocardial oxygenation in awake healthy adults using continuous OS-CMR imaging. DESIGN Prospective observational study. SETTING Single-centre university hospital. Recruitment from August 2020 to January 2022. PARTICIPANTS Thirty-two healthy volunteers younger than 45 years old were recruited. Data were analysed from n = 29 (69% male individuals). INTERVENTION Participants performed a simulated induction breathing manoeuvre consisting of 2.5 min paced breathing with a respiration rate of 14 breaths per minute, followed by 5 deep breaths, then apnoea for up to 60s inside a magnetic resonance imaging scanner (MRI). Cardiac images were acquired with the traditional OS-CMR sequence (OSbh-cine), which requires apnoea for acquisition and with two free-breathing OS-CMR sequences: a high-resolution single-shot sequence (OSfb-ss) and a real-time cine sequence (OSfb-rtcine). MAIN OUTCOME MEASURES Myocardial oxygenation response at the end of the paced breathing period and at the 30 s timepoint during the subsequent apnoea, reflecting the time of successful intubation in a clinical setting. RESULTS The paced breathing followed by five deep breaths significantly reduced myocardial oxygenation, which was observed with all three techniques (OSbh-cine -6.0 ± 2.6%, OSfb-ss -12.0 ± 5.9%, OSfb-rtcine -5.4 ± 7.0%, all P < 0.05). The subsequent vasodilating stimulus of apnoea then significantly increased myocardial oxygenation (OSbh-cine 6.8 ± 3.1%, OSfb-ss 8.4 ± 5.6%, OSfb-rtcine 15.7 ± 10.0%, all P < 0.01). The free-breathing sequences were reproducible and were not inferior to the original sequence for any stage. CONCLUSION Breathing manoeuvres simulating induction of general anaesthesia cause dynamic alterations of myocardial oxygenation in young volunteers, which can be quantified continuously with free-breathing OS-CMR. Introducing these new imaging techniques into peri-operative studies may throw new light into the mechanisms of peri-operative perturbations of myocardial tissue oxygenation and ischaemia. VISUALABSTRACT http://links.lww.com/EJA/A922
    corecore