23 research outputs found

    Implementation of an interactive environment with multilevel wireless links for distributed botanical garden in university campus

    Get PDF
    In this contribution, an end to end system to enable user interaction with a distributed botanical university campus garden is designed, implemented and tested. The proposed system employs different wireless links to collect data related to different bio physiological parameters of both the vegetation mass and the surrounding environment. Detailed analysis of these multilevel communication links is performed by using deterministic volumetric wireless channel estimation and considering underground, near ground and over ground radio propagation conditions. An in-house developed technique enables accurate wireless channel characterization for complete campus scenario considering the multiple link types and all its composing elements. Node definition and network topology is thus obtained by wireless channel analysis of over ground, near ground and underground communication for both 868 MHz and 2.4 GHz Wireless Sensor Networks in an inhomogeneous vegetation environment. Connectivity to enable user interaction as well as for telemetry and tele-control purposes within the campus is achieved by combining ZigBee and LoRaWAN transceivers with the corresponding sensor/actuator platforms. Coverage studies have been performed in order to assess communication capabilities in the set of multiple underground/near ground/over ground links, by means of deterministic channel analysis for the complete university campus location. Measurement results in lab environment as well as full system deployment are presented, showing good agreement with deterministic simulations. Moreover, system level tests have been performed over a physical campus cloud, providing adequate quality of experience metrics. The proposed solution is a scalable system that provides real time trees status monitoring by a cloud-based platform, enabling user interaction within a distributed botanical garden environment in the university campus.This work was supported in part by the 2017 Predoctoral Research Grant supported by the Xunta de Galicia and the Research Projects under Grant TEC2017-85529-C03-3R and Grant RTI2018-095499-B-C31, in part by the Ministerio de Ciencia, Innovación y Universidades, Gobierno de España [MCIU/Agencia Estatal de Investigación (AEI)/Fondo Europeo de Desarrollo Regional (FEDER), Unión Europea (UE)], and in part by the European Union’s Horizon 2020 Research and Innovation Program (Stardust-Holistic and Integrated Urban Model for Smart Cities) under Grant 774094.This work was supported in part by the 2017 Predoctoral Research Grant supported by the Xunta de Galicia and the Research Projects under Grant TEC2017-85529-C03-3R and Grant RTI2018-095499-B-C31, in part by the Ministerio de Ciencia, Innovación y Universidades, Gobierno de España [MCIU/Agencia Estatal de Investigación (AEI)/Fondo Europeo de Desarrollo Regional (FEDER), Unión Europea (UE)], and in part by the European Union’s Horizon 2020 Research and Innovation Program (Stardust-Holistic and Integrated Urban Model for Smart Cities) under Grant 774094

    Implementation of radiating elements for radiofrequency front-ends by screen-printing techniques for Internet of Things applications

    Get PDF
    The advent of the Internet of Things (IoT) has led to embedding wireless transceivers into a wide range of devices, in order to implement context-aware scenarios, in which a massive amount of transceivers is foreseen. In this framework, cost-effective electronic and Radio Frequency (RF) front-end integration is desirable, in order to enable straightforward inclusion of communication capabilities within objects and devices in general. In this work, flexible antenna prototypes, based on screen-printing techniques, with conductive inks on flexible low-cost plastic substrates is proposed. Different parameters such as substrate/ink characteristics are considered, as well as variations in fabrication process or substrate angular deflection in device performance. Simulation and measurement results are presented, as well as system validation results in a real test environment in wireless sensor network communications. The results show the feasibility of using screen-printing antenna elements on flexible low-cost substrates, which can be embedded in a wide array of IoT scenarios.This research was funded by Gobierno de Navarra-Departamento de Desarrollo Económico, grant number 0011-1365-2017-000103

    Deterministic wireless channel characterization towards the integration of communication capabilities to enable context aware industrial internet of thing environments

    Get PDF
    In order to provide interactive capabilities within the context of Internet of Thing (IoT) applications, wireless communication systems play a key role, owing to in-herent mobility, ubiquity and ease of deployment. However, to comply with Quality of Service (QoS) and Quality of Experience (QoE) metrics, coverage/capacity analysis must be performed, to account for the impact of signal blockage as well as multiple interference sources. This analysis is especially complex in the case of indoor scenarios, such as those derived from Industrial Internet of Things (IIoT). In this work, a fully volumetric approach based on hybrid deterministic 3D Ray Launching is employed providing precise wireless channel characterization and hence, system level analysis of indoor scenarios. Coverage/capacity, interference mapping and time domain characterization estimations will be derived, considering different frequencies of operation below 6 GHz. The proposed methodology will be tested against a real measurement scenario, providing full flexibility and scalability for adoption in a wide range of IIoT capable environments.Open Access funding provided by Universidad Pública de Navarra. This work was supported by the European Union’s Horizon 2020 research and Innovation programme under grant agreement N°774094 (Stardust-Holistic and Integrated Urban Model for Smart Cities) and by Ministerio de Ciencia, Innovación y Universidades, Gobierno de España (Agencia Estatal de Investigación, Fondo Europeo de Desarrollo Regional -FEDER-, European Union) under the research grant RTI2018-095499-B-C31 IoTrain

    Analysis and implementation of wireless communications systems and IoT with human body interference in inhomogeneous environments

    Get PDF
    The Integration of wireless communication systems is one of the main drivers of the development of the future connected society. However, this will cause challenges due to the non-static channel effect and interference impact. For this reason, a research work is proposed that enables to obtain optimal node location in relation to radio planning tasks (coverage/capacity analysis, number of lost packets, devices’ consumption...), as well as to characterize the environments considering obstacles and human body being, in terms of the received power level in the complete simulation volume and at the time domain level. This will help derive wireless channel models taking into account real channel variations to deploy a Wireless Sensor Network (WSN) and reduce the impact on wireless systems performance

    Deterministic 3D ray-launching millimeter wave channel characterization for vehicular communications in urban environments

    Get PDF
    The increasing demand for more sensors inside vehicles pursues the intention of making vehicles more 'intelligent'. In this context, the vision of fully connected and autonomous cars is becoming more tangible and will turn into a reality in the coming years. The use of these intelligent transport systems will allow the integration of efficient performance in terms of route control, fuel consumption, and traffic administration, among others. Future vehicle-to-everything (V2X) communication will require a wider bandwidth as well as lower latencies than current technologies can offer, to support high-constraint safety applications and data exhaustive information exchanges. To this end, recent investigations have proposed the adoption of the millimeter wave (mmWave) bands to achieve high throughput and low latencies. However, mmWave communications come with high constraints for implementation due to higher free-space losses, poor diffraction, poor signal penetration, among other channel impairments for these high-frequency bands. In this work, a V2X communication channel in the mmWave (28 GHz) band is analyzed by a combination of an empirical study and a deterministic simulation with an in-house 3D ray-launching algorithm. Multiple mmWave V2X links has been modeled for a complex heterogeneous urban scenario in order to capture and analyze different propagation phenomena, providing full volumetric estimation of frequency/power as well as time domain parameters. Large-and small-scale propagation parameters are obtained for a combination of different situations, taking into account the obstruction between the transceivers of vehicles of distinct sizes. These results can aid in the development of modeling techniques for the implementation of mmWave frequency bands in the vehicular context, with the capability of adapting to different scenario requirements in terms of network topology, user density, or transceiver location. The proposed methodology provides accurate wireless channel estimation within the complete volume of the scenario under analysis, considering detailed topological characteristics.Project RTI2018-095499-B-C31, funded by Ministerio de Ciencia, Innovación y Universidades, Gobierno de España (MCIU/AEI/FEDER, UE)

    Aggregator to electric vehicle LoRaWAN based communication analysis in vehicle-to-grid systems in smart cities

    Get PDF
    Recently, there has been growing attention to the power grid management due to the increasing concerns on global warming. With the advancement in electric vehicles (EV) industry and the evolution in batteries, EVs become an important contributor to the grid with capability of bidirectional power exchange with the grid. In this context, Vehicle-to-Grid (V2G) systems enable multiple functionalities between EVs and the corresponding aggregator. Thus, reliable, long-range communication capabilities between aggregator and EVs is compulsory. In this paper, wireless channel analysis for aggregator and electrical vehicle communication using Long-Range Wide Area Network (LoRaWAN) technology in V2G is presented, in order to test a low-cost solution with large coverage and reduced power consumption profile. Wireless channel and system-level measurements have been performed in a real urban scenario between EV's charging station in Pamplona (Spain) and a vehicle in motion using LoRaWAN 868 MHz devices. Wireless channel characterization is performed by implementing a full 3D urban scenario model, including elements such as buildings, vehicles, users and urban infrastructure such as lamp posts and benches. By means of in-house developed 3D Ray Launching algorithm with hybrid simulation capabilities, estimations of received power levels, signal to noise ratio and time domain parameters have been obtained, for the complete volume of the scenario under test in dense urban conditions. V2G end to end communication has been validated by implementing an intra-vehicle Controller Area Network-BUS (CAN BUS) data gathering system connected to the vehicle LoRaWAN transceiver and subsequently, to a cloud-based web service. The results show that the accurate deterministic based radio channel analysis enables to optimize the network design of LoRaWAN networks in a vehicular environment, considering inter-vehicular and infrastructure links, enabling scalable, low cost end to end data exchange for the deployment of ancillary V2G services.This work was supported in part by the 2017 Predoctoral Research Grant through the Xunta de Galicia and the Research Projects funded by the Ministerio de Ciencia, Innovación y Universidades, Gobierno de España through Ministerio de Ciencia, Innovación y Universidades (MCIU)/Agencia Estatal de Investigación (AEI)/Fondo Europeo de Desarrollo Regional (FEDER)/Unión Europea (UE) under Grant TEC2017-85529-C03-3R and Grant RTI2018-095499-B-C31, and in part by the European Union’s Horizon 2020 Research and Innovation Program (Stardust-Holistic and Integrated Urban Model for Smart Cities) under Grant N◦774094

    Patient tracking in a multi-building, tunnel-connected hospital complex

    Get PDF
    Patients admitted to Intensive Care Units (ICU) are transported from and to other units. Knowing their location is strategic for a sound planning of intra-hospital transports as well as resources management. This is even more crucial in big hospital complexes, comprised of several buildings often connected through tunnels. In this work, a patient tracking application in a multi-building, tunnel-connected hospital complex (the Hospital Complex of Navarre) is presented. The system leverages Internet of Medical Things (IoMT) communication technologies, such as Long Range Wide-Area Network (LoRaWAN) and Near Field Communication (NFC). The locations of the LoRaWAN nodes were selected based on several factors, including the situation of the tunnels, buildings services and medical equipment and a literature review on intra-hospital ICU patients' trips. The possible locations of the LoRaWAN gateways were selected based on 3D Ray Launching Simulations, in order to obtain accurate characterization. Once the locations were set, a LoRaWAN radio coverage studio was performed. The main conclusion drawn is that just one LoRaWAN gateway would be enough to cover all overground LoRaWAN nodes deployed. A second one would be required for underground coverage. In addition, a remote, private cloud infrastructure together with a mobile application was created to manage the information generated. On-field tests were performed to assess the technical feasibility of the system. The application provides with on-demand ICU patients' movement flow around the complex. Although designed for the ICU-admitted patients' context, the system could be easily extrapolated to other use cases.This work was supported in part by the Project 'Arquitectura 'Internet of Medical Things' (IoMT) para la monitorización y gestión semántica de datos relativos a enfermedades cardiovasculares' funded by the Universidad Pública de Navarra under Grant PJUPNA29, in part by the Ministerio de Ciencia, Innovación y Universidades, Gobierno de España (MCIU/AEI/FEDER,UE) under Project TEC2017-85529-C03-3R and Project RTI2018-095499-B-C31, and in part by the European Union's Horizon 2020 Research and Innovation Programme (Stardust-Holistic and Integrated Urban Model for Smart Cities) under Agreement N. 774094

    Radio wave propagation and WSN deployment in complex utility tunnel environments

    Get PDF
    The significant growth of wireless communications systems in the last years has led to the adoption of a wide range of applications not only for the general public but, also, including utilities and administrative authorities. In this context, the notable expansion of new services for smart cities requires, in some specific cases, the construction of underground tunnels in order to enable the maintenance and operation works of utilities, as well as to reduce the visual impact within the city center. One of the main challenges is that, inherently, underground service tunnels lack coverage from exterior wireless communication systems, which can be potentially dangerous for maintenance personnel working within the tunnels. Accordingly, wireless coverage should be deployed within the underground installation in order to guarantee real-time connectivity for safety maintenance, remote surveillance or monitoring operations. In this work, wireless channel characterization for complex urban tunnel environments was analyzed based on the assessment of LoRaWAN and ZigBee technologies operating at 868 MHz. For that purpose, a real urban utility tunnel was modeled and simulated by means of an in-house three-dimensional ray-launching (3D-RL) code. The utility tunnel scenario is a complex and singular environment in terms of radio wave propagation due to the limited dimensions and metallic elements within it, such as service trays, user pathways or handrails, which were considered in the simulations. The simulated 3D-RL algorithm was calibrated and verified with experimental measurements, after which, the simulation and measurement results showed good agreement. Besides, a complete wireless sensor network (WSN) deployment within the tunnels was presented, providing remote cloud data access applications and services, allowing infrastructure security and safety work conditions. The obtained results provided an adequate radio planning approach for the deployment of wireless systems in complex urban utility scenarios, with optimal coverage and enhanced quality of service.This research was funded in part by the School of Engineering and Sciences at Tecnológico de Monterrey, in part by Project RTI2018-095499-B-C31, funded by Ministerio de Ciencia, Innovación y Universidades, Gobierno de España (MCIU/AEI/FEDER, UE) and, in part, by the European Union's Horizon 2020 research and Innovation program under grant agreement N◦774094 (Stardust-Holistic and Integrated Urban Model for Smart Cities)

    A radio channel model for D2D communications blocked by single trees in forest environments

    Get PDF
    In this paper we consider the D2D (Device-to-Device) communication taking place between Wireless Sensor Networks (WSN) elements operating in vegetation environments in order to achieve the radio channel characterization at 2.4 GHz, focusing on the radio links blocked by oak and pine trees modelled from specimens found in a real recreation area located within forest environments. In order to fit and validate a radio channel model for this type of scenarios, both measurements and simulations by means of an in-house developed 3D Ray Launching algorithm have been performed, offering as outcomes the path loss and multipath information of the scenarios under study for forest immersed isolated trees and non-isolated trees. The specific forests, composed of thick in-leaf trees, are called Orgi Forest and Chandebrito, located respectively in Navarre and Galicia, Spain. A geometrical and dielectric model of the trees were created and introduced in the simulation software. We concluded that the scattering produced by the tree can be divided into two zones with different dominant propagation mechanisms: an obstructed line of sight (OLoS) zone far from the tree fitting a log-distance model, and a diffraction zone around the edge of the tree. 2D planes of delay spread value are also presented which similarly reflects the proposed two-zone model.This research was funded by Xunta de Galicia under grant ED431C-2019/26, Spanish Government under grant TEC2017-85529-C03-3R, AtlantTIC Research Center and project RTI2018-095499-B-C31, Funded by Ministerio de Ciencia, Innovación y Universidades, Gobierno de España (MCIU/AEI/FEDER, UE)

    Basketball Player On-Body Biophysical and Environmental Parameter Monitoring Based on Wireless Sensor Network Integration

    Get PDF
    Sport activities have benefited in recent years from the progressive adoption of different technological assets in order to improve individual as well as group training, collect different statistics or enhance the spectator experiences. The progressive adoption of Internet of Things paradigms can also be considered within the scope of sport activities, providing high levels of user interactivity as well as enabling cloud-based data storage and processing. In this work, a system for monitoring biophysical, kinematic and environmental parameters within the development of basketball training is presented. A set of on-body nodes with multiple sensors and wireless body area network capabilities have been designed, implemented and tested under real training conditions during a match. Wireless channel analysis results have been obtained with the aid of in house implemented deterministic 3D ray launching algorithm, providing accurate coverage/capacity estimations in relation with human body consideration in the field as well as in the stadium. Measurement results give relevant information in relation with individual player characteristics as well as with team characteristics, providing a flexible tool to improve training development of basketball.This work was supported in part by the Ministerio de Ciencia, Innovación y Universidades, Spain, (MCIU)/Agencia Estatal de Investigación (AEI)/Fondo Europeo de Desarrollo Regional (FEDER)/European Union under Grant RTI2018-095499-B-C31 (IoTrain), and in part by the European Union's Horizon 2020 Research and Innovation Program (Stardust-Holistic and Integrated Urban Model for Smart Cities) under Grant 774094
    corecore