5 research outputs found

    Investigation of the Role of Protein Kinase D in Human Rhinovirus Replication

    Get PDF
    Picornavirus replication is known to cause extensive remodeling of Golgi and endoplasmic reticulum membranes, and a number of the host proteins involved in the viral replication complex have been identified, including oxysterol binding protein (OSBP) and phosphatidylinositol 4-kinase III beta (PI4KB). Since both OSBP and PI4KB are substrates for protein kinase D (PKD) and PKD is known to be involved in the control of Golgi membrane vesicular and lipid transport, we hypothesized that PKD played a role in viral replication. We present multiple lines of evidence in support of this hypothesis. First, infection of HeLa cells with human rhinovirus (HRV) induced the phosphorylation of PKD. Second, PKD inhibitors reduced HRV genome replication, protein expression, and titers in a concentration-dependent fashion and also blocked the replication of poliovirus (PV) and foot-and-mouth disease virus (FMDV) in a variety of cells. Third, HRV replication was significantly reduced in HeLa cells overexpressing wild-type and mutant forms of PKD1. Fourth, HRV genome replication was reduced in HAP1 cells in which the PKD1 gene was knocked out by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9. Although we have not identified the molecular mechanism through which PKD regulates viral replication, our data suggest that this is not due to enhanced interferon signaling or an inhibition of clathrin-mediated endocytosis, and PKD inhibitors do not need to be present during viral uptake. Our data show for the first time that targeting PKD with small molecules can inhibit the replication of HRV, PV, and FMDV, and therefore, PKD may represent a novel antiviral target for drug discovery. IMPORTANCE Picornaviruses remain an important family of human and animal pathogens for which we have a very limited arsenal of antiviral agents. HRV is the causative agent of the common cold, which in itself is a relatively trivial infection; however, in asthma and chronic obstructive pulmonary disease (COPD) patients, this virus is a major cause of exacerbations resulting in an increased use of medication, worsening symptoms, and, frequently, hospital admission. Thus, HRV represents a substantial health care and economic burden for which there are no approved therapies. We sought to identify a novel host target as a potential anti-HRV therapy. HRV infection induces the phosphorylation of PKD, and inhibitors of this kinase effectively block HRV replication at an early stage of the viral life cycle. Moreover, PKD inhibitors also block PV and FMDV replication. This is the first description that PKD may represent a target for antiviral drug discovery

    Fragment-derived inhibitors of human N-myristoyltransferase block capsid assembly and replication of the common cold virus

    Get PDF
    Rhinoviruses (RVs) are the pathogens most often responsible for the common cold, and are a frequent cause of exacerbations in asthma, chronic obstructive pulmonary disease and cystic fibrosis. Here we report the discovery of IMP-1088, a picomolar dual inhibitor of the human N-myristoyltransferases NMT1 and NMT2, and use it to demonstrate that pharmacological inhibition of host-cell N-myristoylation rapidly and completely prevents rhinoviral replication without inducing cytotoxicity. The identification of cooperative binding between weak-binding fragments led to rapid inhibitor optimization through fragment reconstruction, structure-guided fragment linking and conformational control over linker geometry. We show that inhibition of the co-translational myristoylation of a specific virus-encoded protein (VP0) by IMP-1088 potently blocks a key step in viral capsid assembly, to deliver a low nanomolar antiviral activity against multiple RV strains, poliovirus and foot and-mouth disease virus, and protection of cells against virus-induced killing, highlighting the potential of host myristoylation as a drug target in picornaviral infections

    Glucocorticoids impair type I IFN signalling and enhance rhinovirus replication

    No full text
    Inhaled corticosteroids (ICS) are recommended treatments for all degrees of asthma severity and in combination with bronchodilators are indicated for COPD patients with a history of frequent exacerbations. However, the long-term side effects of glucocorticoids (GCs) may include increased risk of respiratory infections, including viral triggered exacerbations. Rhinovirus (RV) infection is the main trigger of asthma and COPD exacerbations. Thus, we sought to explore the influence of GCs on viral replication. We demonstrate the ICS fluticasone propionate (FP) and two selective non-steroidal (GRT7) and steroidal (GRT10) glucocorticoid receptor (GR) agonists significantly suppress pro-inflammatory (IL-6 and IL-8) and antiviral (IFN-λ1) cytokine production and the expression of the interferon-stimulated genes (ISGs) OAS and viperin in RV-infected bronchial epithelial cells, with a consequent increase of viral replication. We also show that FP, GRT7 and GRT10 inhibit STAT1 Y701 and/or STAT2 Y690 phosphorylation and ISG mRNA induction following cell stimulation with recombinant IFN-β. In addition, we investigated the effects of the ICS budesonide (BD) and the long-acting β2 agonist (LABA) formoterol, alone or as an ICS/LABA combination, on RV-induced ISG expression and viral replication. Combination of BD/formoterol increases the suppression of OAS and viperin mRNA observed with both BD and formoterol alone, but an increase in viral RNA was only observed with BD treatment and not with formoterol. Overall, we provide evidence of an impairment of the innate antiviral immune response by GC therapy and the potential for GCs to enhance viral replication. These findings could have important clinical implications

    Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation

    No full text
    Respiratory viral infections represent the most common cause of allergic asthma exacerbations. Amplification of the type-2 immune response is strongly implicated in asthma exacerbation, but how virus infection boosts type-2 responses is poorly understood. We report a significant correlation between the release of host double-stranded DNA (dsDNA) following rhinovirus infection and the exacerbation of type-2 allergic inflammation in humans. In a mouse model of allergic airway hypersensitivity, we show that rhinovirus infection triggers dsDNA release associated with the formation of neutrophil extracellular traps (NETs), known as NETosis. We further demonstrate that inhibiting NETosis by blocking neutrophil elastase or by degrading NETs with DNase protects mice from type-2 immunopathology. Furthermore, the injection of mouse genomic DNA alone is sufficient to recapitulate many features of rhinovirus-induced type-2 immune responses and asthma pathology. Thus, NETosis and its associated extracellular dsDNA contribute to the pathogenesis and may represent potential therapeutic targets of rhinovirus-induced asthma exacerbations
    corecore