6 research outputs found

    Synthesis and Reactivity of Group 4 Metal Benzyl Complexes Supported by Carbazolide-Based PNP Pincer Ligands

    No full text
    This study focuses on the viability of the carbazole-based <b>Cbzdiphos</b> PNP pincer ligand as a stabilizing element for group 4 metal complexes, and both the diphenylphosphino- and di-isopropylphosphino-substituted <b>Cbzdiphos</b> protioligands <b>1</b><sup><b>Ph</b></sup><b>H</b> and <b>1</b><sup><i><b>i</b></i><b>Pr</b></sup><b>H</b> were used. Treatment of the lithiated protioligands with the corresponding chlorido precursor compounds of the metals (titanium, zirconium, and hafnium) afforded the trichlorido complexes [(Cbzdiphos<sup><i>i</i>Pr</sup>)­MCl<sub>3</sub>] <b>2</b><sup><i><b>i</b></i><b>Pr</b></sup><b>M</b> and [(Cbzdiphos<sup>Ph</sup>)­MCl<sub>3</sub>] <b>2</b><sup><b>Ph</b></sup><b>M</b> (M = Ti, Zr, Hf), which were converted to the corresponding iodido complexes [(Cbzdiphos<sup><i>i</i>Pr</sup>)­MI<sub>3</sub>] <b>3</b><sup><i><b>i</b></i><b>Pr</b></sup><b>M</b> and [(Cbzdiphos<sup>Ph</sup>)­MI<sub>3</sub>] <b>3</b><sup><b>Ph</b></sup><b>M</b> (M = Ti, Zr, Hf) by reaction with an excess of trimethylsilyl iodide. Reaction of <b>2</b><sup><i><b>i</b></i><b>Pr</b></sup><b>Ti</b> and <b>3</b><sup><b>Ph</b></sup><b>Ti</b> with 1 equiv of dibenzyl magnesium tetrahydrofuran adduct led to the formation of the alkylidene complexes <b>4</b><sup><i><b>i</b></i><b>Pr</b></sup><b>Ti</b> and <b>5</b><sup><b>Ph</b></sup><b>Ti</b>, respectively, while the zirconium and hafnium complexes <b>2</b><sup><i><b>i</b></i><b>Pr</b></sup><b>Zr</b> and <b>3</b><sup><b>Ph</b></sup><b>Zr/Hf</b> formed the cyclometalated monoalkyl compounds [(Cbzdiphos<sup><i>i</i>Pr</sup>-CH)­ZrBnCl] <b>6</b><sup><i><b>i</b></i><b>Pr</b></sup><b>Zr</b> as well as [(Cbzdiphos<sup>Ph</sup>-CH)­MBnX] <b>6</b><sup><b>Ph</b></sup><b>Hf</b> (X = Cl) and <b>7</b><sup><b>Ph</b></sup><b>Zr/Hf</b> (X = I) under analogous reaction conditions. On the other hand, stirring <b>2</b><sup><b>Ph</b></sup><b>Zr</b> with 0.25 equiv of tetrabenzyl zirconium afforded [(Cbzdiphos<sup>Ph</sup>)­ZrBnCl<sub>2</sub>] (<b>8</b><sup><b>Ph</b></sup><b>Zr</b>), which contained the PNP ligand intact, while its alkylation with benzyl potassium led to the formation of the cyclometalated monobenzyl complex [(Cbzdiphos<sup>Ph</sup>-CH)­ZrBnCl] (<b>6</b><sup><b>Ph</b></sup><b>Zr</b>). The remaining coordination site occupied by the halogenido ligand in the cyclometalated monobenzyl complexes [(Cbzdiphos-CH)­MBnX] <b>6</b><sup><i><b>i</b></i><b>Pr</b></sup><b>Zr</b>, <b>6</b><sup><b>Ph</b></sup><b>Zr/Hf</b>, and <b>7</b><sup><b>Ph</b></sup><b>Zr/Hf</b> was readily benzylated by treatment with benzyl potassium to afford the cyclometalated dibenzyl complexes [(Cbzdiphos-CH)­MBn<sub>2</sub>] <b>9</b><sup><i><b>i</b></i><b>Pr</b></sup><b>Zr</b> and <b>9</b><sup><b>Ph</b></sup><b>Zr/Hf</b>. Further reaction of <b>9</b><sup><b>Ph</b></sup><b>Zr</b> with an excess of benzyl potassium led to the formation of the anionic tribenzyl zirconium ate complex [(Cbzdiphos-CH)­MBn<sub>3</sub>]K (<b>10</b><sup><b>Ph</b></sup><b>Zr</b>). Upon heating a solution of <b>8</b><sup><b>Ph</b></sup><b>Zr</b> in the presence of 1 mol equiv of trimethyl phosphine, one of the ligand methylene groups was deprotonated, yielding the cyclometalated complex [(Cbzdiphos<sup>Ph</sup>-CH)­ZrCl<sub>2</sub>(PMe<sub>3</sub>)] <b>11</b><sup><b>Ph</b></sup><b>Zr</b>. Finally, reaction of <b>7</b><sup><b>Ph</b></sup><b>Zr</b> with methylene triphenylphosphorane produced the ortho-metalated product [(Cbzdiphos<sup>Ph</sup>-CH)­Zr­(<i>o</i>-C<sub>6</sub>H<sub>4</sub>PPh<sub>2</sub>CH<sub>2</sub>)­I] (<b>12</b><sup><b>Ph</b></sup><b>Zr</b>), which is characterized by a slightly puckered five-membered Zr–C(48)–P(3)–C(49)–C(50) metallacycle

    [2 + 2] Cycloaddition Products of Zirconium and Hafnium Hydrazinediides with Allenes and Heteroallenes and Their Thermally Induced Rearrangements

    No full text
    Reactions of the hydrazinediido complexes [M­(N<sub>2</sub><sup>TBS</sup>N<sub>py</sub>)­(NNPh<sub>2</sub>)­(py)] (M = Zr (<b>1a</b>), Hf (<b>1b</b>)) with (hetero)­allenes result in a variety of [2 + 2] cycloaddition products of the general type [M­(N<sub>2</sub><sup>TBS</sup>N<sub>py</sub>)­(κ<sup>2</sup><i>N,E</i>-(E­(E′R)­NNPh<sub>2</sub>)­(py)] (E = CH<sub>2</sub>, S; E′ = CH, N; R = alkyl, aryl). The reaction of [Zr­(N<sub>2</sub><sup>TBS</sup>N<sub>py</sub>)­(NNPh<sub>2</sub>)­(py)] (<b>1a</b>) with 1 molar equiv of phenyl or mesityl isothiocyanate at room temperature yields [Zr­(N<sub>2</sub><sup>TBS</sup>N<sub>py</sub>)­(κ<sup>2</sup><i>N,S</i>-SC­(NAr)­NNPh<sub>2</sub>)­(py)] (Ar = phenyl (<b>2a</b>), mesityl (<b>2b</b>)). Reacting the hydrazinediides [M­(N<sub>2</sub><sup>TBS</sup>N<sub>py</sub>)­(NNPh<sub>2</sub>)­(py)] (M = Zr (<b>1a</b>), Hf (<b>1b</b>)) with allenes results in the formation of the metallaazacyclobutanes [M­(N<sub>2</sub><sup>TBS</sup>N<sub>py</sub>)­(κ<sup>2</sup><i>N</i>,<i>C</i>-N­(NPh<sub>2</sub>)­CH<sub>2</sub>CCH­(R))­(py)] (M = Zr, R = Ph (<b>4a</b>), cyclohexyl (<b>5a</b>), methyl (<b>6</b>); M = Hf, R = phenyl (<b>4b</b>), cyclohexyl (<b>5b</b>)). Subsequent heating of the cycloaddition products revealed different reactivity patterns: the complex [Zr­(N<sub>2</sub><sup>TBS</sup>N<sub>py</sub>)­(κ<sup>2</sup><i>N,S</i>-SC­(NAr)­NNPh<sub>2</sub>)­(py)] (<b>2a</b>) forms the isomerization product [Zr­(N<sub>2</sub><sup>TBS</sup>N<sub>py</sub>)­(κ<sup>2</sup><i>N,S-</i>SC­(NNPh<sub>2</sub>))­NPh] (<b>3</b>), retaining the N–N bond of the hydrazide. In contrast, the metallacyclobutanes <b>4a</b>,<b>b</b> and <b>5a</b>,<b>b</b> show a tendency toward N–N bond cleavage, resulting in the formation of the C–N- and C–C-coupled product complexes [M­(κ<sup>4</sup><i>N,N,N,N</i>-N<sub>2</sub><sup>TBS</sup>N<sub>py</sub>NC­(Me)CHCy)­(NPh<sub>2</sub>)] (M = Zr (<b>7a</b>), Hf (<b>7b</b>)), [Zr­(N<sub>2</sub><sup>TBS</sup>N<sub>py</sub>)­(κ<sup>2</sup><i>N</i><i>,C-</i>(Ph)­NC<sub>6</sub>H<sub>4</sub>C­(Me)C­(Ph)­NH)] (<b>8</b>) and [Zr­(κ<sup>4</sup><i>N,N,N,N</i>-N<sub>2</sub><sup>TBS</sup>N<sub>py</sub>NC­(Me)=CHPh)­(NPh<sub>2</sub>)] (<b>9</b>)

    Zirconium Complexes Supported by an <i>N-</i>Perfluoro-Arylated Diamidopyridyl Ligand: Synthesis of Hydrazinediido Complexes

    No full text
    The <i>N-</i>perfluoro-phenylated pyridyldiamine H<sub>2</sub>N<sub>2</sub><sup>PFP</sup>N<sub>py</sub> (<b>1</b>) has been prepared by a palladium-catalyzed coupling of hexafluorobenzene and the diamine (H<sub>2</sub>NCH<sub>2</sub>)<sub>2</sub>C­(CH<sub>3</sub>)­(2-C<sub>5</sub>H<sub>4</sub>N) using the palladacycle <i>trans</i>-di­(μ-acetato)­bis­[<i>o</i>-(di-<i>o</i>-tolylphosphino)­benzyl]­palladium­(II) as catalyst. Reactions of H<sub>2</sub>N<sub>2</sub><sup>PFP</sup>N<sub>py</sub> and Zr­(NMe<sub>2</sub>)<sub>4</sub> at room temperature or 90 °C led to the complexes [(N<sup>PFP</sup>N<sub>2</sub><sup>TFAP</sup>N<sub>py</sub>)­ZrF­(NMe<sub>2</sub>)] (<b>2</b>) and [(N<sub>2</sub><sup>TFAP</sup>N<sub>py</sub>)­ZrF<sub>2</sub>] (<b>3</b>) in which one or two dimethylamido groups replaced one or two ortho fluorine atoms of the pentafluorophenyl groups in the ligand. Reaction of Me<sub>3</sub>SiX (X = Cl, I) with [(N<sub>2</sub><sup>TFAP</sup>N<sub>py</sub>)­ZrF<sub>2</sub>] (<b>3</b>) resulted in the formation of mixed halogenated complexes [(N<sub>2</sub><sup>TFAP</sup>N<sub>py</sub>)­ZrFI] (<b>4</b>) and [(N<sub>2</sub><sup>TFAP</sup>N<sub>py</sub>)­ZrFCl] (<b>5</b>) in which the axially bound fluorido ligand is substituted. Reaction of [(N<sub>2</sub><sup>TFAP</sup>N<sub>py</sub>)­ZrF<sub>2</sub>] (<b>3</b>) with LiNHNPh<sub>2</sub> afforded the monohydrazido(1−) complex [(N<sub>2</sub><sup>TFAP</sup>N<sub>py</sub>)­ZrF­(NHNPh<sub>2</sub>)] (<b>6</b>) which was converted to the dimeric fluoro-potassium bridged hydrazinediido complex [Zr­(N<sub>2</sub><sup>TFAP</sup>N<sub>py</sub>)­FNNPh<sub>2</sub>K]<sub>2</sub> (<b>7</b>) using KHMDS. The corresponding reaction with LiHMDS yielded the monomeric, donor free complex [Zr­(N<sub>2</sub><sup>TFAP</sup>N<sub>py</sub>)­NNPh<sub>2</sub>] (<b>8</b>)

    Borane-Bridged Ruthenium Complex Bearing a PNP Ligand: Synthesis and Structural Characterization

    No full text
    Reaction of the precursor complex [RuHCl­(CO)­(PPh<sub>3</sub>)<sub>3</sub>] with the PNP protioligand CbzdiphosH in toluene resulted in the formation of two stereoisomeric hydrido complexes, [(CbzdiphosH)­RuHCl­(CO)] (<b>A</b>). The addition of a strong base (KO<sup>t</sup>Bu or LiEt<sub>3</sub>BH), on the other hand, led to the formation of the 1,2-dehydrochlorination product [(Cbzdiphos)­RuH­(CO)]. The reaction of the latter with BH<sub>3</sub>·THF at room temperature led to the 1,2-addition of the BH<sub>3</sub> moiety to the Ru–N function, forming a RuNBH cycle in [(CbzdiphosHBH<sub>2</sub>)­RuH­(CO)] (<b>B</b>). The same borane-bridged compound was obtained when complex <b>A</b> was treated with NaBH<sub>4</sub> in THF. The BH<sub>2</sub> group forms a bridging unit between the carbazole-N atom and one of the ruthenium-bound hydrides
    corecore