415 research outputs found

    Optimal first arrival times in L\'evy flights with resetting

    Full text link
    We consider diffusive motion of a particle performing a random walk with L\'evy distributed jump lengths and subject to resetting mechanism bringing the walker to an initial position at uniformly distributed times. In the limit of infinite number of steps and for long times, the process converges to a super-diffusive motion with replenishment. We derive formula for a mean first arrival time (MFAT) to a predefined target position reached by a meandering particle and analyze efficiency of the proposed searching strategy by investigating criteria for an optimal (a shortest possible) MFAT.Comment: 10 pages, 6 figure

    Activation process driven by strongly non-Gaussian noises

    Full text link
    The constructive role of non-Gaussian random fluctuations is studied in the context of the passage over the dichotomously switching potential barrier. Our attention focuses on the interplay of the effects of independent sources of fluctuations: an additive stable noise representing non-equilibrium external random force acting on the system and a fluctuating barrier. In particular, the influence of the structure of stable noises on the mean escape time and on the phenomenon of resonant activation (RA) is investigated. By use of the numerical Monte Carlo method it is documented that the suitable choice of the barrier switching rate and random external fields may produce resonant phenomenon leading to the enhancement of the kinetics and the shortest, most efficient reaction time.Comment: 11 pages, 8 figure

    Resonant activation driven by strongly non-Gaussian noises

    Full text link
    The constructive role of non-Gaussian random fluctuations is studied in the context of the passage over the dichotomously switching potential barrier. Our attention focuses on the interplay of the effects of independent sources of fluctuations: an additive stable noise representing non-equilibrium external random force acting on the system and a fluctuating barrier. In particular, the influence of the structure of stable noises on the mean escape time and on the phenomenon of resonant activation (RA) is investigated. By use of the numerical Monte Carlo method it is documented that the suitable choice of the barrier switching rate and random external fields may produce resonant phenomenon leading to the enhancement of the kinetics and the shortest, most efficient reaction time.Comment: 9 pages, 7 figures, RevTeX

    On subdiffusive continuous time random walks with stochastic resetting

    Full text link
    We analyze two models of subdiffusion with stochastic resetting. Each of them consists of two parts: subdiffusion based on the continuous-time random walk (CTRW) scheme and independent resetting events generated uniformly in time according to the Poisson point process. In the first model the whole process is reset to the initial state, whereas in the second model only the position is subject to resets. The distinction between these two models arises from the non-Markovian character of the subdiffusive process. We derive exact expressions for the two lowest moments of the full propagator, stationary distributions, and first hitting times statistics. We also show, with an example of a constant drift, how these models can be generalized to include external forces. Possible applications to data analysis and modeling of biological systems are also discussed.Comment: 11 pages, 5 figure

    Subordinated diffusion and CTRW asymptotics

    Full text link
    Anomalous transport is usually described either by models of continuous time random walks (CTRW) or, otherwise by fractional Fokker-Planck equations (FFPE). The asymptotic relation between properly scaled CTRW and fractional diffusion process has been worked out via various approaches widely discussed in literature. Here, we focus on a correspondence between CTRWs and time and space fractional diffusion equation stemming from two different methods aimed to accurately approximate anomalous diffusion processes. One of them is the Monte Carlo simulation of uncoupled CTRW with a L\'evy α\alpha-stable distribution of jumps in space and a one-parameter Mittag-Leffler distribution of waiting times. The other is based on a discretized form of a subordinated Langevin equation in which the physical time defined via the number of subsequent steps of motion is itself a random variable. Both approaches are tested for their numerical performance and verified with known analytical solutions for the Green function of a space-time fractional diffusion equation. The comparison demonstrates trade off between precision of constructed solutions and computational costs. The method based on the subordinated Langevin equation leads to a higher accuracy of results, while the CTRW framework with a Mittag-Leffler distribution of waiting times provides efficiently an approximate fundamental solution to the FFPE and converges to the probability density function of the subordinated process in a long-time limit.Comment: 10 pages, 7 figure

    Resonant effects in a voltage-activated channel gating

    Full text link
    The non-selective voltage activated cation channel from the human red cells, which is activated at depolarizing potentials, has been shown to exhibit counter-clockwise gating hysteresis. We have analyzed the phenomenon with the simplest possible phenomenological models by assuming 2×22\times 2 discrete states, i.e. two normal open/closed states with two different states of ``gate tension.'' Rates of transitions between the two branches of the hysteresis curve have been modeled with single-barrier kinetics by introducing a real-valued ``reaction coordinate'' parameterizing the protein's conformational change. When described in terms of the effective potential with cyclic variations of the control parameter (an activating voltage), this model exhibits typical ``resonant effects'': synchronization, resonant activation and stochastic resonance. Occurrence of the phenomena is investigated by running the stochastic dynamics of the model and analyzing statistical properties of gating trajectories.Comment: 12 pages, 9 figure

    Levy--Brownian motion on finite intervals: Mean first passage time analysis

    Full text link
    We present the analysis of the first passage time problem on a finite interval for the generalized Wiener process that is driven by L\'evy stable noises. The complexity of the first passage time statistics (mean first passage time, cumulative first passage time distribution) is elucidated together with a discussion of the proper setup of corresponding boundary conditions that correctly yield the statistics of first passages for these non-Gaussian noises. The validity of the method is tested numerically and compared against analytical formulae when the stability index α\alpha approaches 2, recovering in this limit the standard results for the Fokker-Planck dynamics driven by Gaussian white noise.Comment: 9 pages, 13 figure

    Heat and work distributions for mixed Gauss-Cauchy process

    Full text link
    We analyze energetics of a non-Gaussian process described by a stochastic differential equation of the Langevin type. The process represents a paradigmatic model of a nonequilibrium system subject to thermal fluctuations and additional external noise, with both sources of perturbations considered as additive and statistically independent forcings. We define thermodynamic quantities for trajectories of the process and analyze contributions to mechanical work and heat. As a working example we consider a particle subjected to a drag force and two independent Levy white noises with stability indices α=2\alpha=2 and α=1\alpha=1. The fluctuations of dissipated energy (heat) and distribution of work performed by the force acting on the system are addressed by examining contributions of Cauchy fluctuations to either bath or external force acting on the system
    corecore