1,417 research outputs found

    Influence of shape of quantum dots on their far-infrared absorption

    Full text link
    We investigate the effects of the shape of quantum dots on their far-infrared absorption in an external magnetic field by a model calculation. We focus our attention on dots with a parabolic confinement potential deviating from the common circular symmetry, and dots having circular doughnut shape. For a confinement where the generalized Kohn theorem does not hold we are able to interprete the results in terms of a mixture of a center-of-mass mode and collective modes reflecting an excitation of relative motion of the electrons. The calculations are performed within the time-dependent Hartree approximation and the results are compared to available experimental results.Comment: RevTeX, 16 pages with 10 postscript figures included. Submitted to Phys. Rev.

    Spin effects in a confined 2DEG: Enhancement of the g-factor, spin-inversion states and their far-infrared absorption

    Full text link
    We investigate several spin-related phenomena in a confined two-dimensional electron gas (2DEG) using the Hartree-Fock approximation for the mutual Coulomb interaction of the electrons. The exchange term of the interaction causes a large splitting of the spin levels whenever the chemical potential lies within a Landau band (LB). This splitting can be reinterpreted as an enhancement of an effective g-factor, g*. The increase of g* when a LB is half filled can be accompanied by a spontaneous formation of a static spin-inversion state (SIS) whose details depend on the system sision state (SIS) whose details depend on the system size. The coupling of the states of higher LB's into the lowest band by the Coulomb interaction of the 2DEG is essential for the SIS to occur. The far-infrared absorption of the system, relatively insensitive to the spin splitting, develops clear signs of the SIS.Comment: 7 figure

    Magnetization of noncircular quantum dots

    Full text link
    We calculate the magnetization of quantum dots deviating from circular symmetry for noninteracting electrons or electrons interacting according to the Hartree approximation. For few electrons the magnetization is found to depend on their number, and the shape of the dot. The magnetization is an ideal probe into the many-electron state of a quantum dot.Comment: 11 RevTeX pages with 6 included Postscript figure

    The FIR-absorption of short period quantum wires and the transition from one to two dimensions

    Full text link
    We investigate the FIR-absorption of short period parallel quantum wires in a perpendicular quantizing magnetic field. The external time-dependent electric field is linearly polarized along the wire modulation. The mutual Coulomb interaction of the electrons is treated self-consistently in the ground state and in the absorption calculation within the Hartree approximation. We consider the effects of a metal gate grating coupler, with the same or with a different period as the wire modulation, on the absorption. The evolution of the magnetoplasmon in the nonlocal region where it is split into several Bernstein modes is discussed in the transition from: narrow to broad wires, and isolated to overlapping wires. We show that in the case of narrow and not strongly modulated wires the absorption can be directly correlated with the underlying electronic bandstructure.Comment: 15 pages, 9 figures, Revtex, to appear in Phys. Rev.

    A brief exposure to rightward prismatic adaptation changes resting-state network characteristics of the ventral attentional system.

    Get PDF
    A brief session of rightward prismatic adaptation (R-PA) has been shown to alleviate neglect symptoms in patients with right hemispheric damage, very likely by switching hemispheric dominance of the ventral attentional network (VAN) from the right to the left and by changing task-related activity within the dorsal attentional network (DAN). We have investigated this very rapid change in functional organisation with a network approach by comparing resting-state connectivity before and after a brief exposure i) to R-PA (14 normal subjects; experimental condition) or ii) to plain glasses (12 normal subjects; control condition). A whole brain analysis (comprising 129 regions of interest) highlighted R-PA-induced changes within a bilateral, fronto-temporal network, which consisted of 13 nodes and 11 edges; all edges involved one of 4 frontal nodes, which were part of VAN. The analysis of network characteristics within VAN and DAN revealed a R-PA-induced decrease in connectivity strength between nodes and a decrease in local efficiency within VAN but not within DAN. These results indicate that the resting-state connectivity configuration of VAN is modulated by R-PA, possibly by decreasing its modularity

    Rashba-control for the spin excitation of a fully spin polarized vertical quantum dot

    Full text link
    Far infrared radiation absorption of a quantum dot with few electrons in an orthogonal magnetic field could monitor the crossover to the fully spin polarized state. A Rashba spin-orbit coupling can tune the energy and the spin density of the first excited state which has a spin texture carrying one extra unit of angular momentum. The spin orbit coupling can squeeze a flipped spin density at the center of the dot and can increase the gap in the spectrum.Comment: 4 pages, 5 figure

    Memorization of short-range potential fluctuations in Landau levels

    Full text link
    We calculate energy spectra of a two-dimensional electron system in a perpendicular magnetic field and periodic potentials of short periods. The Coulomb interaction is included within a screened Hartree-Fock approximation. The electrostatic screening is poor and the exchange interaction amplifies the energy dispersion. We obtain, by numerical iterations, self-consistent solutions that have a hysteresis-like property. With increasing amplitude of the external potential the energy dispersion and the electron density become periodic, and they remain stable when the external potential is reduced to zero. We explain this property in physical terms and speculate that a real system could memorize short-range potential fluctuations after the potential has been turned off.Comment: 11 pages with 4 included figures, Revte
    corecore