3 research outputs found

    An Experiment on Bare-Metal BigData Provisioning

    Full text link
    Many BigData customers use on-demand platforms in the cloud, where they can get a dedicated virtual cluster in a couple of minutes and pay only for the time they use. Increasingly, there is a demand for bare-metal bigdata solutions for applications that cannot tolerate the unpredictability and performance degradation of virtualized systems. Existing bare-metal solutions can introduce delays of 10s of minutes to provision a cluster by installing operating systems and applications on the local disks of servers. This has motivated recent research developing sophisticated mechanisms to optimize this installation. These approaches assume that using network mounted boot disks incur unacceptable run-time overhead. Our analysis suggest that while this assumption is true for application data, it is incorrect for operating systems and applications, and network mounting the boot disk and applications result in negligible run-time impact while leading to faster provisioning time.This research was supported in part by the MassTech Collaborative Research Matching Grant Program, NSF awards 1347525 and 1414119 and several commercial partners of the Massachusetts Open Cloud who may be found at http://www.massopencloud.or

    M2: Malleable Metal as a Service

    Full text link
    Existing bare-metal cloud services that provide users with physical nodes have a number of serious disadvantage over their virtual alternatives, including slow provisioning times, difficulty for users to release nodes and then reuse them to handle changes in demand, and poor tolerance to failures. We introduce M2, a bare-metal cloud service that uses network-mounted boot drives to overcome these disadvantages. We describe the architecture and implementation of M2 and compare its agility, scalability, and performance to existing systems. We show that M2 can reduce provisioning time by over 50% while offering richer functionality, and comparable run-time performance with respect to tools that provision images into local disks. M2 is open source and available at https://github.com/CCI-MOC/ims.Comment: IEEE International Conference on Cloud Engineering 201
    corecore