3 research outputs found
Synthesis, inĀ vitro biological evaluation and molecular docking study of coumarin-1,4-dihydropyridine derivatives as potent anti-inflammatory agentsĀ
The green chemistry approach provides for the synthesis of coumarin-1,4-dihydropyridine scaffolds 6a-o via sequential multicomponent reaction using catalytic amount of triethylamine (TEA). These new coumarin scaffolds have been successfully explored for the effective inflammatory as well as microbial infection inhibitors. The antimicrobial activity results of the title compounds have shown potent activity against both gram positive and gram negative bacterial, and fungal stains. Additionally, anti-inflammatory activity of all the compounds has been found to be quite promising in comparison with standard Diclofenac sodium. Furthermore, the inĀ silico docking study has been performed for all the compounds with S. aureus DNA gyrase and cyclooxygenase-2 (PDB ID 4PH9). The computational results are in good agreement with the inĀ vitro antibacterial and anti-inflammatory experimental results.
Synthesis, in vitro biological evaluation and molecular docking study of coumarin-1,4-dihydropyridine derivatives as potent anti-inflammatory agents
418-432The green chemistry approach provides for the synthesis of coumarin-1,4-dihydropyridine scaffolds 6a-o via sequential multicomponent reaction using catalytic amount of triethylamine (TEA). These new coumarin scaffolds have been successfully explored for the effective inflammatory as well as microbial infection inhibitors. The antimicrobial activity results of the title compounds have shown potent activity against both gram positive and gram negative bacterial, and fungal stains. Additionally, anti-inflammatory activity of all the compounds has been found to be quite promising in comparison with standard Diclofenac sodium. Furthermore, the inĀ silico docking study has been performed for all the compounds with S. aureus DNA gyrase and cyclooxygenase-2 (PDB ID 4PH9). The computational results are in good agreement with the inĀ vitro antibacterial and anti-inflammatory experimental results
Synthesis, molecular docking, and biological evaluation of methyl-5-(hydroxyimino)-3-(aryl-substituted)hexanoate derivatives
Beta-aryl keto hexanoic acids (5a-l) were synthesized efficiently, followed by esterification that afforded beta-aryl keto methylhexanoates (6a-l). The chemo-selective ketoxime beta-aryl methyl hexanoates (7a-l) were isolated in good yields. Spectroscopic methods were used to characterize the obtained moieties. The antioxidant, anti-inflammatory, and antibacterial properties of the effectively synthesized compounds 7a-l were also investigated. The anti-inflammatory activity of the compounds 7c, 7f, 7i, and 7l was excellent, with a low IC50 value at micromolar concentration, which was much better than the reference diclofenac. All synthesized compounds 7a-l were assessed for their in vitro antibacterial activity against S. aureus, B. subtilis and E. coli.Ā Most of the compounds exhibited promising activity against Gram-positive bacterial strain, compound 7i showed excellent activity compared to standard streptomycin and in the case of E. coli, compounds 7b, 7c, 7j, 7k and 7l have shown moderate activity. Further, the cytotoxic activities of the compounds were assessed against lung cancer cells (A549) by using MTT assay. The possible interaction mechanism of the molecules 7c and 7g with Gram-negative strain E. coli DNA gyrase B in complex with PDB ID: 4DUH was studied