61 research outputs found

    A weighted reduced basis method for parabolic PDEs with random data

    Full text link
    This work considers a weighted POD-greedy method to estimate statistical outputs parabolic PDE problems with parametrized random data. The key idea of weighted reduced basis methods is to weight the parameter-dependent error estimate according to a probability measure in the set-up of the reduced space. The error of stochastic finite element solutions is usually measured in a root mean square sense regarding their dependence on the stochastic input parameters. An orthogonal projection of a snapshot set onto a corresponding POD basis defines an optimum reduced approximation in terms of a Monte Carlo discretization of the root mean square error. The errors of a weighted POD-greedy Galerkin solution are compared against an orthogonal projection of the underlying snapshots onto a POD basis for a numerical example involving thermal conduction. In particular, it is assessed whether a weighted POD-greedy solutions is able to come significantly closer to the optimum than a non-weighted equivalent. Additionally, the performance of a weighted POD-greedy Galerkin solution is considered with respect to the mean absolute error of an adjoint-corrected functional of the reduced solution.Comment: 15 pages, 4 figure

    Model Order Reduction for Rotating Electrical Machines

    Full text link
    The simulation of electric rotating machines is both computationally expensive and memory intensive. To overcome these costs, model order reduction techniques can be applied. The focus of this contribution is especially on machines that contain non-symmetric components. These are usually introduced during the mass production process and are modeled by small perturbations in the geometry (e.g., eccentricity) or the material parameters. While model order reduction for symmetric machines is clear and does not need special treatment, the non-symmetric setting adds additional challenges. An adaptive strategy based on proper orthogonal decomposition is developed to overcome these difficulties. Equipped with an a posteriori error estimator the obtained solution is certified. Numerical examples are presented to demonstrate the effectiveness of the proposed method

    Nasal reconstruction: extending the limits

    Full text link
    Reconstructing the 3-dimensional structure of the nose requires the maintenance of its aesthetic form and function. Restoration of the correct dimension, projection, skin quality, symmetrical contour, and function remains problematic. Consequently, modern approaches of nasal reconstruction aim at rebuilding the units rather than just covering the defect. However, revising or redoing a failed or insufficient reconstruction remains very challenging and requires experience and creativity. Here, we present a very particular case with a male patient, who underwent 37 operations elsewhere and presented with a failed nasal reconstruction. We describe and illustrate the complex steps of the nasal rereconstruction, including the reconstruction of the forehead donor site, surgical delay procedures for lining, and the coverage with a third paramedian forehead flap

    Orbitarekonstruktion mit gefäßgestielten mikrovaskulär anastomosierten Transplantaten

    Full text link

    Rekonstruktion der Haut und Weichteile nach Tumoren im Gesichtsbereich

    Full text link

    Die Brückenlappentechnik nach Tripier zur Unterlidrekonstruktion

    Full text link

    Möglichkeiten und Grenzen von myocutanen Lappen bei Decubitaulcera

    Full text link
    corecore