61 research outputs found
A weighted reduced basis method for parabolic PDEs with random data
This work considers a weighted POD-greedy method to estimate statistical
outputs parabolic PDE problems with parametrized random data. The key idea of
weighted reduced basis methods is to weight the parameter-dependent error
estimate according to a probability measure in the set-up of the reduced space.
The error of stochastic finite element solutions is usually measured in a root
mean square sense regarding their dependence on the stochastic input
parameters. An orthogonal projection of a snapshot set onto a corresponding POD
basis defines an optimum reduced approximation in terms of a Monte Carlo
discretization of the root mean square error. The errors of a weighted
POD-greedy Galerkin solution are compared against an orthogonal projection of
the underlying snapshots onto a POD basis for a numerical example involving
thermal conduction. In particular, it is assessed whether a weighted POD-greedy
solutions is able to come significantly closer to the optimum than a
non-weighted equivalent. Additionally, the performance of a weighted POD-greedy
Galerkin solution is considered with respect to the mean absolute error of an
adjoint-corrected functional of the reduced solution.Comment: 15 pages, 4 figure
Model Order Reduction for Rotating Electrical Machines
The simulation of electric rotating machines is both computationally
expensive and memory intensive. To overcome these costs, model order reduction
techniques can be applied. The focus of this contribution is especially on
machines that contain non-symmetric components. These are usually introduced
during the mass production process and are modeled by small perturbations in
the geometry (e.g., eccentricity) or the material parameters. While model order
reduction for symmetric machines is clear and does not need special treatment,
the non-symmetric setting adds additional challenges. An adaptive strategy
based on proper orthogonal decomposition is developed to overcome these
difficulties. Equipped with an a posteriori error estimator the obtained
solution is certified. Numerical examples are presented to demonstrate the
effectiveness of the proposed method
Nasal reconstruction: extending the limits
Reconstructing the 3-dimensional structure of the nose requires the maintenance of its aesthetic form and function. Restoration of the correct dimension, projection, skin quality, symmetrical contour, and function remains problematic. Consequently, modern approaches of nasal reconstruction aim at rebuilding the units rather than just covering the defect. However, revising or redoing a failed or insufficient reconstruction remains very challenging and requires experience and creativity. Here, we present a very particular case with a male patient, who underwent 37 operations elsewhere and presented with a failed nasal reconstruction. We describe and illustrate the complex steps of the nasal rereconstruction, including the reconstruction of the forehead donor site, surgical delay procedures for lining, and the coverage with a third paramedian forehead flap
- …
