3 research outputs found
Extracting temporal patterns from smart city data
Mestrado de dupla diplomação com a DULAY UNIVERSITYIn the modern world data and information become a powerful instrument of management, business, safety, medicine and others. The most fashionable sciences are the sciences which allow us to extract valuable knowledge from big volumes of information. Novel data processing techniques remains a trend for the last five years, in a way that continues to provide interesting results. This paper investigates the algorithms and approaches for processing smart city data, in particular, water consumption data for the city of Bragança,
Portugal. Data from the last seven years was processed according to a rigorous methodology, that includes five stages: cleaning, preparation, exploratory analysis, identification of patterns and critical interpretation of the results. After understanding the data and choosing the best algorithms, a web-based data visualizing tools was developed, providing dashboards to geospatial data representation, useful in the decision making of municipalities.В современном мире данные и информация стали одним из самых мощных инстру- ментов в управлении, бизнесе, безопасности, медицине, науке и социальной сфере. Са- мыми модными и востребованными науками в настоящий момент являются науки, поз- воляющие извлекать полезные знания из больших объемов информации. Новые методы обработки данных остаются тенденцией последних пяти лет и продолжают генерировать интересные результаты. В данной работе исследуются алгоритмы и подходы для обработ-ки данных "умного города", в частности, данных о потреблении воды в городе Браганса, Португалия. Данные за последние семь лет обрабатывались в соответствии со строгой методологией, включающей пять этапов: очистка, подготовка, исследовательский анализ,
выявление закономерностей и критическая интерпретация результатов. Цель исследова-ниия - определение шаблонов поведения в потрблении воды связанных с определенными событиями и построение модели прогнозова на основе найденных закономерностей. В результате исчерпывающего анализа с помощью множества методов было установлено отсутствие систематических зависимостей в рассматриваемом типе данных. На заключи-тельном этапе был создан инструмент визуализации данных, обеспечивающий динами-ческие панели для представления аналитических данных о распределении потребления.
Разработанный инструмент управления аналитикой полезен для принятия решений му-ниципалитетом
Literature review on the smart city resources analysis with big data methodologies
This article provides a systematic literature review on applying different algorithms to municipal data processing, aiming
to understand how the data were collected, stored, pre-processed, and analyzed, to compare various methods, and to select
feasible solutions for further research. Several algorithms and data types are considered, finding that clustering, classification,
correlation, anomaly detection, and prediction algorithms are frequently used. As expected, the data is of several types,
ranging from sensor data to images. It is a considerable challenge, although several algorithms work very well, such as Long
Short-Term Memory (LSTM) for timeseries prediction and classification.Open access funding provided by FCT|FCCN (b-on).info:eu-repo/semantics/publishedVersio