29 research outputs found

    Characterization of S-20098, a new melatonin analog

    No full text
    National audienc

    Effects of SCN-lesions on circadian blood pressure rhythm in normotensive and transgenic hypertensive rats

    No full text
    Transgenic hypertensive TGR(mREN2)27 (TGR) rats, carrying an additional mouse renin gene, have been found to show inverse circadian blood pressure profiles compared to normotensive Sprague-Dawley rats. In order to evaluate the contributions of the suprachiasmatic nucleus (SCN) and the neurohormone melatonin to cardiovascular circadian regulation in TGR(mREN2)27 rats and Sprague-Dawley (SPRD) controls, we investigated the effects of melatonin agonist and antagonist treatment in SCN-lesioned and nonlesioned rats, which were kept under conditions of alternating light and darkness (LD). After destruction of the SCN, circadian rhythmicity in blood pressure, heart rate (HR), and motor activity (MA) was almost abolished in rats of both strains. One week of treatment with a synthetic melatonin agonist S-21634 was not able to restore circadian variation in the parameters monitored. In nonlesioned TGR(mREN2)27 rats and Sprague-Dawley control rats, the melatonin antagonist S-22365 had no suppressive effect on LD-synchronized circadian rhythmicity, indicating that LD itself may have a stronger influence on the SCN than endogenous melatoni

    Interindividual differences in the pattern of melatonin secretion of the Wistar rat

    No full text
    In vivo trans-pineal microdialysis was performed in male Wistar rats maintained under a 12 hr light:12 hr dark (LD 12:12) cycle. Collected dialysates were assayed by radioimmunoassay for melatonin concentrations. A non-linear regression was fitted through the obtained datapoints to determine the time points at which a 50% increase (IT50) and decrease (DT50) of the nocturnal melatonin peak were reached. In a first experiment, the nocturnal melatonin profiles of four animals were determined throughout 5 consecutive days. In a second experiment, we analysed the melatonin profiles during the night in rats originating from three different breeding colonies (Dépré Harlan, and Iffa-Cŕedo). A low intraindividual variability was found on the phase markers IT50 and DT50, as on peak duration of melatonin rhythms estimated over 5 subsequent days in the same animal. In contrast, animals showed a large interindividual variability in their profile phase markers and the values were dependent on the origin of the breeding colony. Each rat colony was characterized by early or late IT50 and DT50 as long or short peak length. It is concluded from experiment 1 that the melatonin rhythm is a very stable circadian marker. Nevertheless, great caution must be taken in the choice of animal groups while studying circadian rhythms due to the large interindividual variability observed in experiment 2. Therefore, as the technique allows the use of the animal as its own control, the present study demonstrated that the use of the microdialysis technique is of interest in studies on the circadian syste

    Novel benzothiazolin-2-one and benzoxazin-3-one arylpiperazine derivatives with mixed 5HT(1A)/D-2 affinity as potential atypical antipsychotics

    No full text
    Since it was known that 5HT properties (5HT(1A) agonism or 5HT(2A) antagonism) combined with D-2 antagonism may lead to atypical antipsychotic drugs, a series of 19 benzothiazolin-2-one and benzoxazin-3-one derivatives possessing the arylpiperazine moiety Was prepared, and their binding profiles were investigated. All tested compounds displayed very high affinities for the 5HT(1A) and Da receptors. Therefore, further pharmacological studies were carried out on selected compounds (24, 27, 30, 46, and 47). This evaluation in rats clearly revealed potent antipsychotic properties along with a decrease of extrapyramidal side effects. These derivatives are currently under preclinical development

    New methoxy-chroman derivatives, 4[N-(5-methoxy-chroman-3-yl)N- propylamino]butyl-8-azaspiro-(4,5)-decane-7,9-dione [(+/-)-S 20244] and its enantiomers, (+)-S 20499 and (-)-S 20500, with potent agonist properties at central 5-hydroxytryptamine1A receptors

    No full text
    The potential interaction of the new methoxy-chroman derivatives: (+/-)-S 20244 (4-[N-(5-methoxy-chroman-3-yl)N-propylamino]butyl-8-azaspiro- (4,5)-decane-7,9-dione) and its enantiomers (+)-S 20499 and (-)-S 20500 with central 5-hydroxytryptamine1A (5-HT1A) receptors was assessed using biochemical and electrophysiological tests in the rat. In vitro binding assays revealed that these drugs bound with high affinity to 5-HT1A sites in hippocampal membranes (Ki: 0.19 nM for (+)-S 20499, 0.95 nM for (-)-S 20500 and 0.35 nM for the racemate (+/-) S 20244). As seen with the prototypical 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino) tetralin, (+/-)-S 20244, (+)-S 20499 and (-)-S 20500 inhibited forskolin-activated adenylate cyclase in hippocampal homogenates with potencies corresponding to their respective affinities for 5-HT1A sites. The maximal inhibitory effect of the chroman derivatives was not additive with that of 8-hydroxy-2-(di-n- propylamino)tetralin and could be competitively reduced by 5-HT1A antagonists such as (-)-propranolol and (+/-)-tertatolol. Electrophysiological recordings within the dorsal raphe nucleus both in vitro (in brain-stem slices) and in vivo (in chloral hydrate anesthetized rats) showed that (+)-S 20499, (+/-)-S 20244 and (-)-S 20500 induced, in that order of (decreasing) potency, a dose-dependent reduction in the spontaneous firing of serotoninergic neurons. In vitro, as well as in vivo, the inhibitory influence of the chroman derivatives on the discharge frequency of serotoninergic neurons could be competitively antagonized by (+/-)-tertatolol. Finally, oral administration of increasing doses of the most potent enantiomer, (+)-S 20499, induced a marked reduction in the rate of 5-HT turnover, without affecting that of dopamine, in various brain areas. All these biochemical and electrophysiological data indicate that (+)-S 20499 is a highly potent agonist at both presynaptic (i.e., somatodendritic) and postsynaptic 5-HT1A receptors in the rat brain

    (−)Tertatolol is a potent antagonist at pre- and postsynaptic serotonin 5-HT1A receptors in the rat brain

    No full text
    The potential 5-HT1A antagonist properties of the ß-antagonist tertatolol were assessed using biochemical and electrophysiological assays in the rat. (±) Tertatolol bound with high affinity (Ki = 38 nM) to 5-HT1A sites labelled by [3H]8-OH-DPAT in hippocampal membranes. The (–)stereoisomer (Ki = 18 nM) was about 50-fold more potent than the (+)stereoisomer (Ki = 864 nM) to inhibit the specific binding of [3H]-8-OHDPAT. As expected of a 5-HT1A antagonist, (–)tertatolol prevented in a concentration-dependent manner (Ki = 24 nM) the inhibitory effect of 8-OH-DPAT on forskolin-stimulated adenylate cyclase activity in rat hippocampal homogenates. Furthermore in vivo pretreatment with (–)tertatolol (5 mg/kg s.c.) significantly reduced the inhibitory influence of 8-OH-DPAT (0.3 mg/ kg s.c.) on the accumulation of 5-hydroxytryptophan in various brain areas after the blockade of aromatic L-amino acid decarboxylase by NSD-1015 (100 mg/kg i.p.). In vitro (in brainstem slices; Ki 50 nM) and in vivo (in chloral hydrate anaesthetized rats; ID50 0.40 mg/kg i.v.), (–)tertatolol prevented the inhibitory effects of the 5-HT1A receptor agonists 8-OH-DPAT, ipsapirone and lesopitron on the firing rate of serotoninergic neurones within the dorsal raphe nucleus. In about 25% of these neurones, the basal firing rate was significantly increased by (–)tertatolol (up to +47% in vitro, and +30% in vivo). These data indicate that (-)tertatolol is a potent competitive antagonist at both pre (in the dorsal raphe nucleus) - and post (in the hippocampus) - synaptic 5-HT1A receptors in the rat brain
    corecore