22 research outputs found

    Mathematical modelling of MSW incineration in a packed bed

    Get PDF

    Replacing Traditional Plastics with Biodegradable Plastics:Impact on Carbon Emissions

    Get PDF
    In recent years, a great deal of attention has been focused on the environmental impact of plastics, including the carbon emissions related to plastics, which has promoted the application of biodegradable plastics. Countries worldwide have shown high interest in replacing traditional plastics with biodegradable plastics. However, no systematic comparison has been conducted on the carbon emissions of biodegradable versus traditional plastic products. This study evaluates the carbon emissions of traditional and biodegradable plastic products (BPPs) over four stages and briefly discusses environmental and economic perspectives. Four scenarios—namely, the traditional method, chemical recycling, industrial composting, and anaerobic digestion—are considered for the disposal of waste biodegradable plastic product (WBBPs). The analysis takes China as a case study. The results show that the carbon emissions of 1000 traditional plastic products (plastic bags, lunch boxes, cups, etc.) were 52.09–150.36 carbon emissions equivalent of per kilogram (kg CO2eq), with the stage of plastic production contributing 50.71%–50.77%. In comparison, 1000 similar BPPs topped out at 21.06–56.86 kg CO2eq, approximately 13.53%–62.19% lower than traditional plastic products. The difference was mainly at the stages of plastic production and waste disposal, and the BPPs showed significant carbon reduction potential at the raw material acquisition stage. Waste disposal plays an important role in environmental impact, and composting and anaerobic digestion are considered to be preferable disposal methods for WBBPs. However, the high cost of biodegradable plastics is a challenge for their widespread use. This study has important reference significance for the sustainable development of the biodegradable plastics industry.</p

    Application of Landfill Gas-Water Joint Regulation Technology in Tianjin Landfill

    No full text
    Landfills have long been widely used to dispose of Municipal Solid Waste (MSW). However, many landfills have faced early closure issues in recent years due to overload operations. Although in-situ aeration technology can quickly stabilize MSW, low oxygen utilization rates present a general problem that results in high energy-consuming and operating costs. This research aims to improve oxygen utilization efficiency by observing the dynamic respiratory index and the removal of contaminants. Three continuous reactors were constructed and designed with targeted aeration and re-circulation schemes for different landfill ages. The results show that a well-designed aerobic, semi-aerobic, and anaerobic reactor can fully degrade the organic components of MSW with different landfill ages, and the quantity of waste has been reduced by more than 60%. Additionally, it was disclosed that gas-water joint technology has a promotional effect on activating microorganisms

    Designing the Slide-Ring Polymer Network with both Good Mechanical and Damping Properties via Molecular Dynamics Simulation

    No full text
    Through coarse-grained molecular dynamics simulation, we have successfully designed the chemically cross-linked (fixed junction) and the slide-ring (SR) systems. Firstly, we examine the dynamic properties such as the mean-square displacement, the bond, and the end-to-end autocorrelation functions as a function of the cross-linking density, consistently pointing out that the SR system exhibits much lower mobility compared with the fixed junction one at the same cross-linking density. This is further validated by a relatively higher glass transition temperature for the SR system compared with that of the fixed junction one. Then, we calculated the effect of the cross-linking density on the stretch-recovery behavior for the SR and fixed junction systems. Although the chain orientation of the SR system is higher than that of the fixed-junction system, the tensile stress is smaller than the latter. We infer that much greater chain sliding can occur during the stretch, because the movable ring structure homogeneously sustains the external force of the SR system, which, therefore, leads to much larger permanent set and higher hysteresis during the recovery process compared with the fixed-junction one. Based on the stretch-recovery behavior for various cross-linking densities, we obtain the change of the hysteresis loss, which is larger for the SR system than that of the fixed junction system. Lastly, we note that the relatively bigger compressive stress for the SR system results from the aggregation of the rigid rings compared with the fixed junction system. In general, compared with the traditionally cross-linked system, a deep molecular-level insight into the slide-ring polymer network is offered and thus is believed to provide some guidance to the design and preparation of the slide-ring polymer network with both good mechanical and damping properties

    Strategy for Assuring Water Security in the Haihe River Basin by 2035

    No full text
    Water security in the Haihe River Basin is an important component of China's ecological civilization and is vital for highquality national development of the country. Considering the development requirement for water security in the Haihe River Basin, we analyzed the problems regarding water security assurance from the perspectives of water resources, water environment, water ecology, and flood disasters. Subsequently, we predicted the development trend of water security in the Haihe River Basin by 2035 through data simulation. On this basis, an overall idea was proposed, that is, assuring water security in the Haihe River Basin by reinforcing measures for protecting water ecology, and highlighting the role of water resources carrying capacity. Focus should be placed on developing capacities regarding (1) systematic allocation and efficient utilization of water resources, (2) comprehensive improvement in water environment, (3) governance and restoration of basin ecology, and (4) prevention and emergency response of flood disasters. Furthermore, we proposed the following suggestions from a technological perspective: (1) implementing new strategies for the conservation and efficient utilization of water resources, (2) ensuring drinking water safety and improving water governance capacities, (3) establishing a water ecological pattern that features people-water harmony, and (4) developing a flood disaster prediction and response mechanism

    Tailoring the mechanical properties of polymer nanocomposites via interfacial engineering

    Get PDF
    The improvement of mechanical properties of polymer nanocomposites (PNCs) has been studied for many years, with the main focus on the structure of the nanofillers. Much less effort has been devoted to unraveling the factors controlling the structure of the grafted chains. Herein, through coarse-grained molecular-dynamics simulations, we have successfully fabricated an ideal, mechanically-interlocked composite structure composed of end-functionalized chains grafted to the nanoparticle surface forming rings and making the matrix chains thread through these rings. Depending on the details of the grafting, the reinforcement effect can be remarkable, improving the tensile stress of the system significantly up to 700%. Meanwhile, anisotropy of the system's mechanical response is also observed. Furthermore, the influence of the grafted chain distribution on the mechanical properties of the system has been investigated as well. We observe that the mechanical properties of the system are closely related to the total number of the beads in the grafted chains or the synergistic effect between the length and density of the grafted chains leads to no significant difference in the performance of systems. At constant grafting density, the mechanical properties of the systems correlate negatively to the grafted chain length. In general, our study should help to design and fabricate high-performance PNCs with excellent mechanical properties

    Aquatic environment remediation by atomic layer deposition-based multi-functional materials: A review

    No full text
    Water pollution still poses significant threats to the ecosystem and human health today. The adsorption, advanced oxidation and membranes filtration have been extensively investigated and utilized for aquatic contaminants remediation, and their efficiency is closely correlated with the advanced materials design and fabrication (e.g. adsorbents, catalysts and membranes). Thanks to uniform deposition, three-dimensional conformity and process controllability, the atomic layer deposition (ALD) has emerged as a promising strategy for fabrication of these multifunctional materials, arising their successful application in aquatic contaminants remediation. Therefore, a timely review on ALD-based water treatment materials is highly important to summarize the current opportunity and elucidate unaddressed problems in this field. Herein, in this review, the advantages of ALD process, the superiority of ALD-based materials and the corresponding decontamination performance were analyzed comprehensively, highlighting key advantages offered by this technology

    Tailoring the mechanical properties of polymer nanocomposites via interfacial engineering

    No full text
    \u3cp\u3eThe improvement of mechanical properties of polymer nanocomposites (PNCs) has been studied for many years, with the main focus on the structure of the nanofillers. Much less effort has been devoted to unraveling the factors controlling the structure of the grafted chains. Herein, through coarse-grained molecular-dynamics simulations, we have successfully fabricated an ideal, mechanically-interlocked composite structure composed of end-functionalized chains grafted to the nanoparticle surface forming rings and making the matrix chains thread through these rings. Depending on the details of the grafting, the reinforcement effect can be remarkable, improving the tensile stress of the system significantly up to 700%. Meanwhile, anisotropy of the system's mechanical response is also observed. Furthermore, the influence of the grafted chain distribution on the mechanical properties of the system has been investigated as well. We observe that the mechanical properties of the system are closely related to the total number of the beads in the grafted chains or the synergistic effect between the length and density of the grafted chains leads to no significant difference in the performance of systems. At constant grafting density, the mechanical properties of the systems correlate negatively to the grafted chain length. In general, our study should help to design and fabricate high-performance PNCs with excellent mechanical properties.\u3c/p\u3
    corecore