54 research outputs found

    Multi-scale Traffic Pattern Bank for Cross-city Few-shot Traffic Forecasting

    Full text link
    Traffic forecasting is crucial for intelligent transportation systems (ITS), aiding in efficient resource allocation and effective traffic control. However, its effectiveness often relies heavily on abundant traffic data, while many cities lack sufficient data due to limited device support, posing a significant challenge for traffic forecasting. Recognizing this challenge, we have made a noteworthy observation: traffic patterns exhibit similarities across diverse cities. Building on this key insight, we propose a solution for the cross-city few-shot traffic forecasting problem called Multi-scale Traffic Pattern Bank (MTPB). Primarily, MTPB initiates its learning process by leveraging data-rich source cities, effectively acquiring comprehensive traffic knowledge through a spatial-temporal-aware pre-training process. Subsequently, the framework employs advanced clustering techniques to systematically generate a multi-scale traffic pattern bank derived from the learned knowledge. Next, the traffic data of the data-scarce target city could query the traffic pattern bank, facilitating the aggregation of meta-knowledge. This meta-knowledge, in turn, assumes a pivotal role as a robust guide in subsequent processes involving graph reconstruction and forecasting. Empirical assessments conducted on real-world traffic datasets affirm the superior performance of MTPB, surpassing existing methods across various categories and exhibiting numerous attributes conducive to the advancement of cross-city few-shot forecasting methodologies. The code is available in https://github.com/zhyliu00/MTPB.Comment: Under review. Text overlap with arXiv:2308.0972

    Revisiting Spatial-Temporal Similarity: A Deep Learning Framework for Traffic Prediction

    Full text link
    Traffic prediction has drawn increasing attention in AI research field due to the increasing availability of large-scale traffic data and its importance in the real world. For example, an accurate taxi demand prediction can assist taxi companies in pre-allocating taxis. The key challenge of traffic prediction lies in how to model the complex spatial dependencies and temporal dynamics. Although both factors have been considered in modeling, existing works make strong assumptions about spatial dependence and temporal dynamics, i.e., spatial dependence is stationary in time, and temporal dynamics is strictly periodical. However, in practice, the spatial dependence could be dynamic (i.e., changing from time to time), and the temporal dynamics could have some perturbation from one period to another period. In this paper, we make two important observations: (1) the spatial dependencies between locations are dynamic; and (2) the temporal dependency follows daily and weekly pattern but it is not strictly periodic for its dynamic temporal shifting. To address these two issues, we propose a novel Spatial-Temporal Dynamic Network (STDN), in which a flow gating mechanism is introduced to learn the dynamic similarity between locations, and a periodically shifted attention mechanism is designed to handle long-term periodic temporal shifting. To the best of our knowledge, this is the first work that tackles both issues in a unified framework. Our experimental results on real-world traffic datasets verify the effectiveness of the proposed method.Comment: Accepted by AAAI 201

    CoLight: Learning Network-level Cooperation for Traffic Signal Control

    Full text link
    Cooperation among the traffic signals enables vehicles to move through intersections more quickly. Conventional transportation approaches implement cooperation by pre-calculating the offsets between two intersections. Such pre-calculated offsets are not suitable for dynamic traffic environments. To enable cooperation of traffic signals, in this paper, we propose a model, CoLight, which uses graph attentional networks to facilitate communication. Specifically, for a target intersection in a network, CoLight can not only incorporate the temporal and spatial influences of neighboring intersections to the target intersection, but also build up index-free modeling of neighboring intersections. To the best of our knowledge, we are the first to use graph attentional networks in the setting of reinforcement learning for traffic signal control and to conduct experiments on the large-scale road network with hundreds of traffic signals. In experiments, we demonstrate that by learning the communication, the proposed model can achieve superior performance against the state-of-the-art methods.Comment: 10 pages. Proceedings of the 28th ACM International on Conference on Information and Knowledge Management. ACM, 201

    Sm-Nd Isotope Data Compilation from Geoscientific Literature Using an Automated Tabular Extraction Method

    Full text link
    The rare earth elements Sm and Nd significantly address fundamental questions about crustal growth, such as its spatiotemporal evolution and the interplay between orogenesis and crustal accretion. Their relative immobility during high-grade metamorphism makes the Sm-Nd isotopic system crucial for inferring crustal formation times. Historically, data have been disseminated sporadically in the scientific literature due to complicated and costly sampling procedures, resulting in a fragmented knowledge base. However, the scattering of critical geoscience data across multiple publications poses significant challenges regarding human capital and time. In response, we present an automated tabular extraction method for harvesting tabular geoscience data. We collect 10,624 Sm-Nd data entries from 9,138 tables in over 20,000 geoscience publications using this method. We manually selected 2,118 data points from it to supplement our previously constructed global Sm-Nd dataset, increasing its sample count by over 20\%. Our automatic data collection methodology enhances the efficiency of data acquisition processes spanning various scientific domains. Furthermore, the constructed Sm-Nd isotopic dataset should motivate the research of classifying global orogenic belts

    Dual-Channel Multiplex Graph Neural Networks for Recommendation

    Full text link
    Efficient recommender systems play a crucial role in accurately capturing user and item attributes that mirror individual preferences. Some existing recommendation techniques have started to shift their focus towards modeling various types of interaction relations between users and items in real-world recommendation scenarios, such as clicks, marking favorites, and purchases on online shopping platforms. Nevertheless, these approaches still grapple with two significant shortcomings: (1) Insufficient modeling and exploitation of the impact of various behavior patterns formed by multiplex relations between users and items on representation learning, and (2) ignoring the effect of different relations in the behavior patterns on the target relation in recommender system scenarios. In this study, we introduce a novel recommendation framework, Dual-Channel Multiplex Graph Neural Network (DCMGNN), which addresses the aforementioned challenges. It incorporates an explicit behavior pattern representation learner to capture the behavior patterns composed of multiplex user-item interaction relations, and includes a relation chain representation learning and a relation chain-aware encoder to discover the impact of various auxiliary relations on the target relation, the dependencies between different relations, and mine the appropriate order of relations in a behavior pattern. Extensive experiments on three real-world datasets demonstrate that our \model surpasses various state-of-the-art recommendation methods. It outperforms the best baselines by 10.06\% and 12.15\% on average across all datasets in terms of R@10 and N@10 respectively
    • …
    corecore