135 research outputs found

    "China's peaceful rise": Competing discourses in newspaper articles from "China Daily" and "The Times"."

    Get PDF
    "In recent times, the "rise of China", "peaceful rise of China" etc. have become recurrent phrases appearing in newspaper articles both in China and in the western press referring to the growing economic and political influence of China on the global stage seen by some as a threat and by others as an opportunity. This comparative study focused on "China's peaceful rise" as reported in English language newspapers both from China Daily in China and The Times in Britain. 45 texts from the China Daily website and 20 texts from The Times online resources have been selected as the database and these texts cover the period from 2003 to 2008. Texts from these two newspapers were analysed with the aid of software packages Wmatrix (Rayson, 2008) and WordSmith Tools (Scott, 2001) from a corpus analysis perspective to adopt a quantitative angle and try to make findings more objective and provide hints for the second stage qualitative study by applying Critical Stylistics (Jeffries, 2010) framework. In this research, questions addressed are: o In what ways is "China's peaceful rise" linguistically constructed in the two newspaper sources? o What positions are suggested for readers to take up from these newspaper articles? It is argued that the China Daily database prefers to present this concept "China's peaceful rise" via its reports from a favourable perspective to welcome the peaceful rise of China as a boon both to China and the world; however, The Times database is likely to report the principle of "China's peaceful rise" from a less favourable stance and treat it as a threat to the West and to the international system from language practised in its articles.

    An adaptive ANOVA stochastic Galerkin method for partial differential equations with random inputs

    Full text link
    It is known that standard stochastic Galerkin methods encounter challenges when solving partial differential equations with high dimensional random inputs, which are typically caused by the large number of stochastic basis functions required. It becomes crucial to properly choose effective basis functions, such that the dimension of the stochastic approximation space can be reduced. In this work, we focus on the stochastic Galerkin approximation associated with generalized polynomial chaos (gPC), and explore the gPC expansion based on the analysis of variance (ANOVA) decomposition. A concise form of the gPC expansion is presented for each component function of the ANOVA expansion, and an adaptive ANOVA procedure is proposed to construct the overall stochastic Galerkin system. Numerical results demonstrate the efficiency of our proposed adaptive ANOVA stochastic Galerkin method

    Multilayered Molybdate Microflowers Fabricated by One-Pot Reaction for Efficient Water Splitting

    Get PDF
    The development of high-performance, low-cost and rapid-production bifunctional electrocatalysts towards overall water splitting still poses huge challenges. Herein, the authors utilize a facile hydrothermal method to synthesize a novel structure of Co-doped ammonium lanthanum molybdate on Ni foams (Co-ALMO@NF) as self-supported electrocatalysts. Owing to large active surfaces, lattice defect and conductive channel for rapid charge transport, Co-ALMO@NF exhibits good electrocatalytic performances which requires only 349/341 mV to achieve a high current density of 600 mA cm-2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Besides, a low cell voltage of 1.52 V is required to reach the current density of 10 mA cm-2 in alkaline medium along with an excellent long-term stability for two-electrode configurations. Density functional theory calculations are performed to reveal the reaction mechanism on Co-ALMO@NF, which shows that the Mo site is the most favorable ones for HER, while the introduction of Co is beneficial to reduce the adsorption intensity on the surface of Co-ALMO@NF, thus accelerating OER process. This work highlighted the importance of the structural design for self-supporting electrocatalysts

    Robust Bioinspired MXene–Hemicellulose Composite Films with Excellent Electrical Conductivity for Multifunctional Electrode Applications

    Get PDF
    MXene-based structural materials with high mechanical robustness and excellent electrical conductivity are highly desirable for multifunctional applications. The incorporation of macromolecular polymers has been verified to be beneficial to alleviate the mechanical brittleness of pristine MXene films. However, the intercalation of a large amount of insulating macromolecules inevitably compromises their electrical conductivity. Inspired by wood, short-chained hemicellulose (xylo-oligosaccharide) acts as a molecular binder to bind adjacent MXene nanosheets together; this work shows that this can significantly enhance the mechanical properties without introducing a large number of insulating phases. As a result, MXene–hemicellulose films can integrate a high electrical conductivity (64,300 S m–1) and a high mechanical strength (125 MPa) simultaneously, making them capable of being high-performance electrode materials for supercapacitors and humidity sensors. This work proposes an alternative method to manufacture robust MXene-based structural materials for multifunctional applications

    Robust Biomass-Derived Carbon Frameworks as High-Performance Anodes in Potassium-Ion Batteries

    Get PDF
    Potassium-ion batteries (PIBs) have become one of the promising candidates for electrochemical energy storage that can provide low-cost and high-performance advantages. The poor cyclability and rate capability of PIBs are due to the intensive structural change of electrode materials during battery operation. Carbon-based materials as anodes have been successfully commercialized in lithium- and sodium-ion batteries but is still struggling in potassium-ion battery field. This work conducts structural engineering strategy to induce anionic defects within the carbon structures to boost the kinetics of PIBs anodes. The carbon framework provides a strong and stable structure to accommodate the volume variation of materials during cycling, and the further phosphorus doping modification is shown to enhance the rate capability. This is found due to the change of the pore size distribution, electronic structures, and hence charge storage mechanism. The optimized electrode in this work shows a high capacity of 175 mAh g^{-1} at a current density of 0.2 A g^{-1} and the enhancement of rate performance as the PIB anode (60% capacity retention with the current density increase of 50 times). This work, therefore provides a rational design for guiding future research on carbon-based anodes for PIBs

    Adapting Prompt for Few-shot Table-to-Text Generation

    Full text link
    Pretrained language models (PLMs) have made remarkable progress in table-to-text generation tasks. However, the lack of domain-specific knowledge makes it challenging to bridge the topological gap between tabular data and text, especially in real-world applications with limited resources. To mitigate the limitation of insufficient labeled data, we propose a novel framework: Adapt-Prompt-to-Generate (AdaPTGen). The core insight of AdaPTGen is to adapt prompt templates of domain-specific knowledge into the model, which brings at least three benefits: (1) it injects representation of normal table-related descriptions to bridge the topological gap between tabular data and texts; (2) it enables us to use large amounts of unlabeled domain-specific knowledge fully, which can alleviate the PLMs' inherent shortcomings of lacking domain knowledge; (3) it allows us to design various tasks to explore the domain-specific knowledge. Extensive experiments and analyses are conducted on three open-domain few-shot natural language generation (NLG) data sets: Humans, Songs, and Books. Compared to previous state-of-the-art approaches, our model achieves superior performance in terms of both fluency and accuracy.Comment: arXiv admin note: substantial text overlap with arXiv:2302.0441

    Influence of mixed-phase TiO2 on the activity of adsorption-plasma photocatalysis for total oxidation of toluene

    No full text
    Herein, the effects of different crystalline phases of TiO2 on the adsorption-plasma photocatalytic oxidation of toluene were investigated. First, photocatalysts loaded on a molecular sieve (MS) were characterised and the catalytic performance of toluene abatement was evaluated in a plasma system. The COx yield of the pure anatase (An) sample outperformed other samples in the adsorption-plasma photocatalytic oxidation process, especially for CO2 yield (69.1%). It was revealed that the highest space-time-yield of 2.35 gco(2)/Lcat.h was also achieved using plasma-An/MS. However, the highest total toluene abatement (99.5%) was achieved in the plasma-P25/MS system. The plasma-generated UV flux only played a minor role in photocatalyst activation because of the very low UV flux of 2.7 mu W/cm(2) generated by discharge. For the degradation pathway, compared with the plasma-MS system, byproducts of 1,3-Butadiyne (C4H2), guanidine, methyl-(C2H7N3) did not exist in the TiO2-assisted system, indicating a difference in the toluene degradation pathway. There were no obvious effects of different TiO2 samples on organic byproducts generation, and almost a complete mineralisation of all byproducts was observed after 30 min of treatment, with the exception of ethylamine (C2H7N) and acetaldehyde (C2H4O). Finally, a cycled adsorption-plasma study was conducted to reveal the sustainability of the process. A partial deactivation of plasma-An/MS with less than 7% decrease in CO2 selectivity after 7 cycles was revealed, which is a promising result for use in possible industrial applications

    A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries

    Get PDF
    Despite their cost-effectiveness and intrinsic safety, aqueous zinc-ion batteries have faced challenges with poor reversibility originating from various active water-induced side reactions. After systematically scrutinizing the effects of water on the evolution of solvation structures, electrolyte properties, and electrochemical performances through experimental and theoretical approaches, a hydrated deep eutectic electrolyte with a water-deficient solvation structure ([Zn(H2O)2(eg)2(otf)2]) and reduced free water content in the bulk solution is proposed in this work. This electrolyte can dramatically suppress water-induced side reactions and provide high Zn2+ mass transfer kinetics, resulting in highly reversible Zn anodes (∼99.6% Coulombic efficiency over 1000 cycles and stable cycling over 4500 h) and high capacity Zn//NVO full cells (436 mA h g−1). This work will aid the understanding of electrolyte solvation structure–electrolyte property–electrochemical performance relationships of aqueous electrolytes in aqueous zinc-ion batteries
    • …
    corecore