6 research outputs found

    Transcriptome Analysis on the Mechanism of Ethylicin Inhibiting Pseudomonas syringae pv. actinidiae on Kiwifruit

    No full text
    Bacterial canker disease caused by Pseudomonas syringae pv. actinidiae (Psa) is a devastating disease of kiwifruit, which is severely limiting the development of the kiwifruit industry. Ethylicin is a broad-spectrum plant biomimetic fungicide. However, its application in the control of kiwifruit bacterial canker is rarely reported, and the mechanism of ethylicin on Psa remains unknown. In this study, we investigated the effect of ethylicin on Psa in vitro and in vivo and found that ethylicin can inhibit the growth of Psa and prevent the cankering in the plant stem. Mechanism investigation indicated that ethylicin acted by limiting the movement of Psa, destroying the cell membrane of Psa, and inhibiting the formation of Psa biofilm. In addition, it was also found through transcriptomics research that ethylicin can up-regulate the expression of genes related to protein export and biofilm formation–Pseudomonas aeruginosa and down-regulate the expression of genes related to flagellar assembly in Psa. This study concluded that ethylicin can effectively inhibit Psa growth, and it could help to gain a better understanding of the mechanisms of ethylicin inhibiting Psa and provide practical data for the application of ethylicin as a highly potent agent for controlling the bacterial canker disease of kiwifruit

    Field Control Effect and Initial Mechanism: A Study of Isobavachalcone against Blister Blight Disease

    No full text
    Blister blight (BB) disease is caused by the obligate biotrophic fungal pathogen Exobasidium vexans Massee and seriously affects the yield and quality of Camellia sinensis. The use of chemical pesticides on tea leaves substantially increases the toxic risks of tea consumption. Botanic fungicide isobavachalcone (IBC) has the potential to control fungal diseases on many crops but has not been used on tea plants. In this study, the field control effects of IBC were evaluated by comparison and in combination with natural elicitor chitosan oligosaccharides (COSs) and the chemical pesticide pyraclostrobin (Py), and the preliminary action mode of IBC was also investigated. The bioassay results for IBC or its combination with COSs showed a remarkable control effect against BB (61.72% and 70.46%). IBC, like COSs, could improve the disease resistance of tea plants by enhancing the activity of tea-plant-related defense enzymes, including polyphenol oxidase (PPO), catalase (CAT), phenylalanine aminolase (PAL), peroxidase (POD), superoxide dismutase (SOD), β-1,3-glucanase (Glu), and chitinase enzymes. The fungal community structure and diversity of the diseased tea leaves were examined using Illumina MiSeq sequencing of the internal transcribed spacer (ITS) region of the ribosomal rDNA genes. It was obvious that IBC could significantly alter the species’ richness and the diversity of the fungal community in affected plant sites. This study broadens the application range of IBC and provides an important strategy for the control of BB disease

    From Regime to Law: American Constitutionalism in Contemporary China

    No full text
    corecore