57 research outputs found

    Bis(dinitrogen)cobalt(−1) Complexes with NHC Ligation: Synthesis, Characterization, and Their Dinitrogen Functionalization Reactions Affording Side-on Bound Diazene Complexes

    No full text
    Late-transition-metal-based catalysts are widely used in N<sub>2</sub> fixation reactions, but the reactivity of late-transition-metal N<sub>2</sub> complexes, besides iron N<sub>2</sub> complexes, has remained poorly understood as their N<sub>2</sub> complexes were thought to be labile and hard to functionalize. By employing a monodentate <i>N</i>-heterocyclic carbene (NHC), 1,3-dicyclohexylimidazol-2-ylidene (ICy) as ligand, the cobalt(0)– and cobalt(−1)–N<sub>2</sub> complexes, [(ICy)<sub>3</sub>Co­(N<sub>2</sub>)] (<b>1</b>) and [(ICy)<sub>2</sub>Co­(N<sub>2</sub>)<sub>2</sub>M]<sub><i>n</i></sub> (M = K, <b>2a</b>; Rb, <b>2b</b>; Cs, <b>2c</b>), respectively, were synthesized from the stepwise reduction of (ICy)<sub>3</sub>CoCl by the corresponding alkaline metals under a N<sub>2</sub> atmosphere. Complexes <b>2a</b>–<b>c</b> in their solid states adopt polymeric structures. The N–N distances (1.145(6)–1.162(5) Å) and small N–N infrared stretchings (ca. 1800 and 1900 cm<sup>–1</sup>) suggest the strong N<sub>2</sub> activation of the end-on N<sub>2</sub> ligands in <b>2a</b>–<b>c</b>. One electron oxidation of <b>1</b> by [Cp<sub>2</sub>Fe]­[BF<sub>4</sub>] gave the cobalt­(I) complex devoid of N<sub>2</sub> ligand [(ICy)<sub>3</sub>Co]­[BF<sub>4</sub>] (<b>3</b>). The bis­(dinitrogen)­cobalt(−1) complexes <b>2a</b>–<b>c</b> undergo protonation reaction with triflic acid to give N<sub>2</sub>H<sub>4</sub> in 24–30% yields (relative to cobalt). Complexes <b>2a</b>–<b>c</b> could also react with silyl halides to afford diazene complexes [(ICy)<sub>2</sub>Co­(η<sup>2</sup>-R<sub>3</sub>SiNNSiR<sub>3</sub>)] (R = Me, <b>6a</b>; Et, <b>6b</b>) that are the first diazene complexes of late transition metals prepared from N<sub>2</sub> functionalization. Characterization data, in combination with calculation results, suggest the electronic structures of the diazene complexes as low-spin cobalt­(II) complexes containing dianionic ligand [η<sup>2</sup>-R<sub>3</sub>SiNNSiR<sub>3</sub>]<sup>2–</sup>. Complexes <b>1</b>, <b>2a</b>–<b>c</b>, <b>6a</b>, <b>6b</b>, and (ICy)<sub>2</sub>CoCl<sub>2</sub> proved to be effective catalysts for the reductive silylation of N<sub>2</sub> to afford N­(SiMe<sub>3</sub>)<sub>3</sub>. These NHC–cobalt catalysts display comparable turnover numbers (ca. 120) that exceed the reported 3d metal catalysts. The fine performance of the NHC–cobalt complexes in the stoichiometric and catalytic N<sub>2</sub>-functionalization reactions points out the utility of low-valent low-coordinate group 9 metal species for N<sub>2</sub> fixation

    Metabolic Response to Oral Microcystin-LR Exposure in the Rat by NMR-Based Metabonomic Study

    No full text
    Microcystin-LR (MCLR), a potent hepatotoxin, is causing increased risks to public health. Although the liver is the main target organ of MCLR, the metabolic profiling of liver in response to MCLR in vivo remains unknown. Here, we comprehensively analyzed the metabolic change of liver and ileal flushes in rat orally gavaged with MCLR by <sup>1</sup>H nuclear magnetic resonance (NMR). Quantification of hepatic MCLR and its glutathione and cysteine conjugates by liquid chromatography–electrospray ionization–mass spectrometry (LC-ESI-MS) was conducted. Metabonomics results revealed significant associations of MCLR-induced disruption of hepatic metabolisms with inhibition of nutrient absorption, as evidenced by a severe decrease of 12 amino acids in the liver and their corresponding elevation in ileal flushes. The hepatic metabolism signature of MCLR was characterized by significant inhibition of tyrosine anabolism and catabolism, three disrupted pathways of choline metabolism, glutathione exhaustion, and disturbed nucleotide synthesis. Notably, substantial alterations of hepatic metabolism were observable even at the low MCLR-treated group (0.04 mg/kg MCLR), although no apparent histological changes in liver were observed in the low- and medium-dosed groups. These observations offered novel insights into the microcystin hepatotoxic mechanism at a functional level, thereby facilitating further assessment and clarification of human health risk from MCs exposure

    Image_1_Impact of Pediococcus acidilactici GLP06 supplementation on gut microbes and metabolites in adult beagles: a comparative analysis.TIFF

    No full text
    There is growing interest in the potential health benefits of probiotics for both humans and animals. The study aimed to investigate the effects of feeding the canine-derived probiotic Pediococcus acidilactici GLP06 to adult beagles by analysing the microbiome and metabolome. Twenty-four healthy adult beagles were randomly assigned to four groups. The CK group received a standard diet, while the three probiotic groups, the LG group (2 × 108 CFU/day/dog), MG group (2 × 109 CFU/day/dog), and HG group (2 × 1010 CFU/day/dog), received the standard diet supplemented with varying amounts of probiotics. The results show that, compared to the CK group, total antioxidant capacity was significantly increased in the MG and HG groups (p < 0.05), and superoxide dismutase and catalase were significantly increased in the HG group (p < 0.05). Compared to the CK group, malondialdehyde and blood urea nitrogen content were significantly decreased in the MG and HG groups (p < 0.05). Additionally, secretory immunoglobulin A activity was significantly increased in the HG group compared to the CK and LG groups (p < 0.05), and immunoglobulin G activity was significantly increased in the HG group compared to the CK, LG, and MG groups (p < 0.05). In addition, compared with the CK group, the abundance of Faecalitalea and Collinsella increased in the LG group, and the relative abundance of Tyzzerella and Parasutterella increased in the MG group. The α diversity and the relative abundances of beneficial bacteria (Faecalibacterium, Lachnospiraceae_NK4A1316, and Ruminococcaceae_UCG-005) were higher in the HG group than in the CK group. Furthermore, acetic acid content was significantly increased in the HG group compared to the CK, LG, and MG groups (p < 0.05). Butyric acid, isobutyric acid, and the total SCFA content were significantly increased in the HG group compared to the CK group (p < 0.05). Moreover, metabolome analysis revealed 111 upregulated and 171 downregulated metabolites in the HG group. In conclusion, this study presents evidence that supplementing with P. acidilactici GLP06 can have a positive impact on antioxidant activity, immunoproteins, SCFAs, and gut microbiota in adult beagles. These findings highlight the potential of probiotics as a dietary intervention to enhance gut health and overall wellbeing in companion animals.</p

    Data_Sheet_1_Impact of Pediococcus acidilactici GLP06 supplementation on gut microbes and metabolites in adult beagles: a comparative analysis.docx

    No full text
    There is growing interest in the potential health benefits of probiotics for both humans and animals. The study aimed to investigate the effects of feeding the canine-derived probiotic Pediococcus acidilactici GLP06 to adult beagles by analysing the microbiome and metabolome. Twenty-four healthy adult beagles were randomly assigned to four groups. The CK group received a standard diet, while the three probiotic groups, the LG group (2 × 108 CFU/day/dog), MG group (2 × 109 CFU/day/dog), and HG group (2 × 1010 CFU/day/dog), received the standard diet supplemented with varying amounts of probiotics. The results show that, compared to the CK group, total antioxidant capacity was significantly increased in the MG and HG groups (p < 0.05), and superoxide dismutase and catalase were significantly increased in the HG group (p < 0.05). Compared to the CK group, malondialdehyde and blood urea nitrogen content were significantly decreased in the MG and HG groups (p < 0.05). Additionally, secretory immunoglobulin A activity was significantly increased in the HG group compared to the CK and LG groups (p < 0.05), and immunoglobulin G activity was significantly increased in the HG group compared to the CK, LG, and MG groups (p < 0.05). In addition, compared with the CK group, the abundance of Faecalitalea and Collinsella increased in the LG group, and the relative abundance of Tyzzerella and Parasutterella increased in the MG group. The α diversity and the relative abundances of beneficial bacteria (Faecalibacterium, Lachnospiraceae_NK4A1316, and Ruminococcaceae_UCG-005) were higher in the HG group than in the CK group. Furthermore, acetic acid content was significantly increased in the HG group compared to the CK, LG, and MG groups (p < 0.05). Butyric acid, isobutyric acid, and the total SCFA content were significantly increased in the HG group compared to the CK group (p < 0.05). Moreover, metabolome analysis revealed 111 upregulated and 171 downregulated metabolites in the HG group. In conclusion, this study presents evidence that supplementing with P. acidilactici GLP06 can have a positive impact on antioxidant activity, immunoproteins, SCFAs, and gut microbiota in adult beagles. These findings highlight the potential of probiotics as a dietary intervention to enhance gut health and overall wellbeing in companion animals.</p

    Synthesis of Chiral α‑Amino Tertiary Boronic Esters by Enantioselective Hydroboration of α‑Arylenamides

    No full text
    The rhodium-catalyzed asymmetric hydroboration of α-arylenamides with BI-DIME as the chiral ligand and (Bpin)<sub>2</sub> as the reagent yields for the first time a series of α-amino tertiary boronic esters in good yields and excellent enantioselectivities (up to 99% ee)

    Image_4_Epigallocatechin-3-Gallate Promotes the Growth of Mink Hair Follicles Through Sonic Hedgehog and Protein Kinase B Signaling Pathways.TIF

    No full text
    <p>Background: Hair follicles play an essential role in the growth of hair. Epigallocatechin-3-gallate (EGCG), a catechin polyphenol in green tea, has various bioactivities. The present study aims to evaluate the effect of EGCG on the growth of mink hair follicles and investigate the possible molecular mechanisms.</p><p>Methods: The length of hair follicles was recorded up to 6 days in presence of 0.1–5 μM EGCG. Primary dermal papilla cells (DPCs) and outer root sheath cells (ORSCs) were treated with 0.25–4 μM EGCG, and their growth was evaluated by MTT assay and cell cycle detection. The levels of key molecules in sonic hedgehog (Shh) and protein kinase B (AKT) signaling pathways were further assessed by quantitative real-time PCR, western blot and immunofluorescence. To determine the involvement of Shh and AKT pathways in EGCG-mediated growth-promotion of ORSCs and DPCs, Shh pathway inhibitors cyclopamine and GANT61 or AKT pathway inhibitor LY294002 were employed, and then cell proliferation and cell cycle were analyzed.</p><p>Results: Data from ex vivo culture showed that, in presence of 0.5–2.5 μM EGCG, the growth of mink hair follicles was promoted. In vitro, the proliferation of DPCs and ORSCs was enhanced by 0.5–4 μM EGCG treatment. More cells entered S phase upon treatment of EGCG, accompanied with upregulation of cyclin D1 and cyclin E1. Furthermore, when exposed to EGCG, the Shh and AKT signaling pathways were activated in both hair follicles and primary DPCs and ORSCs. Inhibiting either of these two pathways partly reversed the effect of EGCG on proliferation and cell cycle of DPCs and ORSCs.</p><p>Conclusion: EGCG promotes the growth of mink hair follicles at concentrations of 0.5–2.5 μM. This growth-promoting effect of EGCG may be associated with the increased proliferation of DPCs and ORSCs through activating Shh and AKT signaling pathways.</p

    Image_1_Epigallocatechin-3-Gallate Promotes the Growth of Mink Hair Follicles Through Sonic Hedgehog and Protein Kinase B Signaling Pathways.TIF

    No full text
    <p>Background: Hair follicles play an essential role in the growth of hair. Epigallocatechin-3-gallate (EGCG), a catechin polyphenol in green tea, has various bioactivities. The present study aims to evaluate the effect of EGCG on the growth of mink hair follicles and investigate the possible molecular mechanisms.</p><p>Methods: The length of hair follicles was recorded up to 6 days in presence of 0.1–5 μM EGCG. Primary dermal papilla cells (DPCs) and outer root sheath cells (ORSCs) were treated with 0.25–4 μM EGCG, and their growth was evaluated by MTT assay and cell cycle detection. The levels of key molecules in sonic hedgehog (Shh) and protein kinase B (AKT) signaling pathways were further assessed by quantitative real-time PCR, western blot and immunofluorescence. To determine the involvement of Shh and AKT pathways in EGCG-mediated growth-promotion of ORSCs and DPCs, Shh pathway inhibitors cyclopamine and GANT61 or AKT pathway inhibitor LY294002 were employed, and then cell proliferation and cell cycle were analyzed.</p><p>Results: Data from ex vivo culture showed that, in presence of 0.5–2.5 μM EGCG, the growth of mink hair follicles was promoted. In vitro, the proliferation of DPCs and ORSCs was enhanced by 0.5–4 μM EGCG treatment. More cells entered S phase upon treatment of EGCG, accompanied with upregulation of cyclin D1 and cyclin E1. Furthermore, when exposed to EGCG, the Shh and AKT signaling pathways were activated in both hair follicles and primary DPCs and ORSCs. Inhibiting either of these two pathways partly reversed the effect of EGCG on proliferation and cell cycle of DPCs and ORSCs.</p><p>Conclusion: EGCG promotes the growth of mink hair follicles at concentrations of 0.5–2.5 μM. This growth-promoting effect of EGCG may be associated with the increased proliferation of DPCs and ORSCs through activating Shh and AKT signaling pathways.</p

    Image_2_Epigallocatechin-3-Gallate Promotes the Growth of Mink Hair Follicles Through Sonic Hedgehog and Protein Kinase B Signaling Pathways.TIF

    No full text
    <p>Background: Hair follicles play an essential role in the growth of hair. Epigallocatechin-3-gallate (EGCG), a catechin polyphenol in green tea, has various bioactivities. The present study aims to evaluate the effect of EGCG on the growth of mink hair follicles and investigate the possible molecular mechanisms.</p><p>Methods: The length of hair follicles was recorded up to 6 days in presence of 0.1–5 μM EGCG. Primary dermal papilla cells (DPCs) and outer root sheath cells (ORSCs) were treated with 0.25–4 μM EGCG, and their growth was evaluated by MTT assay and cell cycle detection. The levels of key molecules in sonic hedgehog (Shh) and protein kinase B (AKT) signaling pathways were further assessed by quantitative real-time PCR, western blot and immunofluorescence. To determine the involvement of Shh and AKT pathways in EGCG-mediated growth-promotion of ORSCs and DPCs, Shh pathway inhibitors cyclopamine and GANT61 or AKT pathway inhibitor LY294002 were employed, and then cell proliferation and cell cycle were analyzed.</p><p>Results: Data from ex vivo culture showed that, in presence of 0.5–2.5 μM EGCG, the growth of mink hair follicles was promoted. In vitro, the proliferation of DPCs and ORSCs was enhanced by 0.5–4 μM EGCG treatment. More cells entered S phase upon treatment of EGCG, accompanied with upregulation of cyclin D1 and cyclin E1. Furthermore, when exposed to EGCG, the Shh and AKT signaling pathways were activated in both hair follicles and primary DPCs and ORSCs. Inhibiting either of these two pathways partly reversed the effect of EGCG on proliferation and cell cycle of DPCs and ORSCs.</p><p>Conclusion: EGCG promotes the growth of mink hair follicles at concentrations of 0.5–2.5 μM. This growth-promoting effect of EGCG may be associated with the increased proliferation of DPCs and ORSCs through activating Shh and AKT signaling pathways.</p

    Image_6_Epigallocatechin-3-Gallate Promotes the Growth of Mink Hair Follicles Through Sonic Hedgehog and Protein Kinase B Signaling Pathways.TIF

    No full text
    <p>Background: Hair follicles play an essential role in the growth of hair. Epigallocatechin-3-gallate (EGCG), a catechin polyphenol in green tea, has various bioactivities. The present study aims to evaluate the effect of EGCG on the growth of mink hair follicles and investigate the possible molecular mechanisms.</p><p>Methods: The length of hair follicles was recorded up to 6 days in presence of 0.1–5 μM EGCG. Primary dermal papilla cells (DPCs) and outer root sheath cells (ORSCs) were treated with 0.25–4 μM EGCG, and their growth was evaluated by MTT assay and cell cycle detection. The levels of key molecules in sonic hedgehog (Shh) and protein kinase B (AKT) signaling pathways were further assessed by quantitative real-time PCR, western blot and immunofluorescence. To determine the involvement of Shh and AKT pathways in EGCG-mediated growth-promotion of ORSCs and DPCs, Shh pathway inhibitors cyclopamine and GANT61 or AKT pathway inhibitor LY294002 were employed, and then cell proliferation and cell cycle were analyzed.</p><p>Results: Data from ex vivo culture showed that, in presence of 0.5–2.5 μM EGCG, the growth of mink hair follicles was promoted. In vitro, the proliferation of DPCs and ORSCs was enhanced by 0.5–4 μM EGCG treatment. More cells entered S phase upon treatment of EGCG, accompanied with upregulation of cyclin D1 and cyclin E1. Furthermore, when exposed to EGCG, the Shh and AKT signaling pathways were activated in both hair follicles and primary DPCs and ORSCs. Inhibiting either of these two pathways partly reversed the effect of EGCG on proliferation and cell cycle of DPCs and ORSCs.</p><p>Conclusion: EGCG promotes the growth of mink hair follicles at concentrations of 0.5–2.5 μM. This growth-promoting effect of EGCG may be associated with the increased proliferation of DPCs and ORSCs through activating Shh and AKT signaling pathways.</p

    Image_7_Epigallocatechin-3-Gallate Promotes the Growth of Mink Hair Follicles Through Sonic Hedgehog and Protein Kinase B Signaling Pathways.TIF

    No full text
    <p>Background: Hair follicles play an essential role in the growth of hair. Epigallocatechin-3-gallate (EGCG), a catechin polyphenol in green tea, has various bioactivities. The present study aims to evaluate the effect of EGCG on the growth of mink hair follicles and investigate the possible molecular mechanisms.</p><p>Methods: The length of hair follicles was recorded up to 6 days in presence of 0.1–5 μM EGCG. Primary dermal papilla cells (DPCs) and outer root sheath cells (ORSCs) were treated with 0.25–4 μM EGCG, and their growth was evaluated by MTT assay and cell cycle detection. The levels of key molecules in sonic hedgehog (Shh) and protein kinase B (AKT) signaling pathways were further assessed by quantitative real-time PCR, western blot and immunofluorescence. To determine the involvement of Shh and AKT pathways in EGCG-mediated growth-promotion of ORSCs and DPCs, Shh pathway inhibitors cyclopamine and GANT61 or AKT pathway inhibitor LY294002 were employed, and then cell proliferation and cell cycle were analyzed.</p><p>Results: Data from ex vivo culture showed that, in presence of 0.5–2.5 μM EGCG, the growth of mink hair follicles was promoted. In vitro, the proliferation of DPCs and ORSCs was enhanced by 0.5–4 μM EGCG treatment. More cells entered S phase upon treatment of EGCG, accompanied with upregulation of cyclin D1 and cyclin E1. Furthermore, when exposed to EGCG, the Shh and AKT signaling pathways were activated in both hair follicles and primary DPCs and ORSCs. Inhibiting either of these two pathways partly reversed the effect of EGCG on proliferation and cell cycle of DPCs and ORSCs.</p><p>Conclusion: EGCG promotes the growth of mink hair follicles at concentrations of 0.5–2.5 μM. This growth-promoting effect of EGCG may be associated with the increased proliferation of DPCs and ORSCs through activating Shh and AKT signaling pathways.</p
    • …
    corecore