2 research outputs found

    Binding States of Protein–Metal Complexes in Cells

    No full text
    The identification of endogenous proteins as well as their binding to metal ions in living cells is determined by combining pulsed electrophoretic separations with nanoelectrospray ionization followed by mass spectrometric detection. This approach avoids problems resulting from the complicated cellular environment. In this manner, we demonstrate the rapid identification (300 ms or less) of intact proteins from living E. coli cells including the complexation of calmodulin with calcium ion. The latter showed different binding states from those observed in in vitro studies. These observations also reveal in vitro measurements do not necessarily represent the actual situation in living cells. We conclude that the attempted in situ measurement of intracellular proteins with minimal sampling processes should be preferred

    Reliable Tracking In-Solution Protein Unfolding via Ultrafast Thermal Unfolding/Ion Mobility-Mass Spectrometry

    No full text
    Sequential unfolding of monomeric proteins is important for the global understanding of local conformational elements (e.g., secondary structures and domain connections) within those protein assemblies. Ion mobility-mass spectrometry (IM-MS) is an emerging and promising technique for probing gradual protein structural perturbations in the gas phase. However, it is still challenging to track sequential unfolding in the solution phase. Here, we extended IM-MS to track in-solution sequential unfolding of monomeric proteins having single and/or multidomains. The present method combines ultrafast local heating effect (LHE)-driven sequential unfolding with IM-MS identification. Protein sequential unfolding in solution is demonstrated by the rapid and controllable IM-MS data switch between native and gradually unfolded states. Our results show that LHE induces gradual protein conformational transitions associated with biological functions, where IM-MS tracks the sequential unfolding of monomeric proteins
    corecore