356 research outputs found
Minimizing Rational Functions by Exact Jacobian SDP Relaxation Applicable to Finite Singularities
This paper considers the optimization problem of minimizing a rational
function. We reformulate this problem as polynomial optimization by the
technique of homogenization. These two problems are shown to be equivalent
under some generic conditions. The exact Jacobian SDP relaxation method
proposed by Nie is used to solve the resulting polynomial optimization. We also
prove that the assumption of nonsingularity in Nie's method can be weakened as
the finiteness of singularities. Some numerical examples are given to
illustrate the efficiency of our method.Comment: 23 page
A Deterministic Equivalent for the Analysis of Non-Gaussian Correlated MIMO Multiple Access Channels
Large dimensional random matrix theory (RMT) has provided an efficient
analytical tool to understand multiple-input multiple-output (MIMO) channels
and to aid the design of MIMO wireless communication systems. However, previous
studies based on large dimensional RMT rely on the assumption that the transmit
correlation matrix is diagonal or the propagation channel matrix is Gaussian.
There is an increasing interest in the channels where the transmit correlation
matrices are generally nonnegative definite and the channel entries are
non-Gaussian. This class of channel models appears in several applications in
MIMO multiple access systems, such as small cell networks (SCNs). To address
these problems, we use the generalized Lindeberg principle to show that the
Stieltjes transforms of this class of random matrices with Gaussian or
non-Gaussian independent entries coincide in the large dimensional regime. This
result permits to derive the deterministic equivalents (e.g., the Stieltjes
transform and the ergodic mutual information) for non-Gaussian MIMO channels
from the known results developed for Gaussian MIMO channels, and is of great
importance in characterizing the spectral efficiency of SCNs.Comment: This paper is the revision of the original manuscript titled "A
Deterministic Equivalent for the Analysis of Small Cell Networks". We have
revised the original manuscript and reworked on the organization to improve
the presentation as well as readabilit
FEDRR: Fast, Exhaustive Detection of Redundant Hierarchical Relations for Quality Improvement of Large Biomedical Ontologies
Background: Redundant hierarchical relations refer to such patterns as two paths from one concept to another, one with length one (direct) and the other with length greater than one (indirect). Each redundant relation represents a possibly unintended defect that needs to be corrected in the ontology quality assurance process. Detecting and eliminating redundant relations would help improve the results of all methods relying on the relevant ontological systems as knowledge source, such as the computation of semantic distance between concepts and for ontology matching and alignment.
Results: This paper introduces a novel and scalable approach, called FEDRR – Fast, Exhaustive Detection of Redundant Relations – for quality assurance work during ontological evolution. FEDRR combines the algorithm ideas of Dynamic Programming with Topological Sort, for exhaustive mining of all redundant hierarchical relations in ontological hierarchies, in O(c·|V|+|E|) time, where |V| is the number of concepts, |E| is the number of the relations, and c is a constant in practice. Using FEDRR, we performed exhaustive search of all redundant is-a relations in two of the largest ontological systems in biomedicine: SNOMED CT and Gene Ontology (GO). 372 and 1609 redundant is-a relations were found in the 2015-09-01 version of SNOMED CT and 2015-05-01 version of GO, respectively. We have also performed FEDRR on over 190 source vocabularies in the UMLS - a large integrated repository of biomedical ontologies, and identified six sources containing redundant is-a relations. Randomly generated ontologies have also been used to further validate the efficiency of FEDRR.
Conclusions: FEDRR provides a generally applicable, effective tool for systematic detecting redundant relations in large ontological systems for quality improvement
Privacy Leaks through Data Hijacking Attack on Mobile Systems
To persistently eavesdrop on the mobile devices, attackers may obtain the elevated privilege and inject malicious modules into the user devices. Unfortunately, the attackers may not be able to obtain the privilege for a long period of time since the exploitable vulnerabilities may be fixed or the malware may be removed. In this paper, we propose a new data hijacking attack for the mobile apps. By employing the proposed method, the attackers are only required to obtain the root privilege of the user devices once, and they can persistently eavesdrop without any change to the original device. Specifically, we design a new approach to construct a shadow system by hijacking user data files. In the shadow system, attackers possess the identical abilities to the victims. For instance, if a victim has logged into the email app, the attacker can also access the email server in the shadow system without authentication in a long period of time. Without reauthentication of the app, it is difficult for victims to notice the intrusion since the whole eavesdropping is performed on other devices (rather than the user devices). In our experiments, we evaluate the effectiveness of the proposed attack and the result demonstrates that even the Android apps released by the top developers cannot resist this attack. Finally, we discuss some approaches to defend the proposed attack
Motion Predicting of Autonomous Tracked Vehicles with Online Slip Model Identification
Precise understanding of the mobility is essential for high performance autonomous tracked vehicles in challenging circumstances, though the complex track/terrain interaction is difficult to model. A slip model based on the instantaneous centers of rotation (ICRs) of treads is presented and identified to predict the motion of the vehicle in a short term. Unlike many research studies estimating current ICRs locations using velocity measurements for feedback controllers, we focus on predicting the forward trajectories by estimating ICRs locations using position measurements. ICRs locations are parameterized over both tracks rolling speeds and the kinematic parameters are estimated in real time using an extended Kalman filter (EKF) without requiring prior knowledge of terrain parameters. Simulation results verify that the proposed algorithm performs better than the traditional method when the pose measuring frequencies are low. Experiments are conducted on a tracked vehicle with a weight of 13.6 tons. Results demonstrate that the predicted position and heading errors are reduced by about 75% and the reduction of pose errors is over 24% in the absence of the real-time kinematic global positioning system (RTK GPS)
- …