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Precise understanding of the mobility is essential for high performance autonomous tracked vehicles in challenging circumstances,
though the complex track/terrain interaction is difficult tomodel. A slipmodel based on the instantaneous centers of rotation (ICRs)
of treads is presented and identified to predict the motion of the vehicle in a short term. Unlike many research studies estimating
current ICRs locations using velocity measurements for feedback controllers, we focus on predicting the forward trajectories by
estimating ICRs locations using position measurements. ICRs locations are parameterized over both tracks rolling speeds and
the kinematic parameters are estimated in real time using an extended Kalman filter (EKF) without requiring prior knowledge of
terrain parameters. Simulation results verify that the proposed algorithm performs better than the traditional method when the
posemeasuring frequencies are low. Experiments are conducted on a tracked vehicle with a weight of 13.6 tons. Results demonstrate
that the predicted position and heading errors are reduced by about 75% and the reduction of pose errors is over 24% in the absence
of the real-time kinematic global positioning system (RTK GPS).

1. Introduction

Tracked vehicles are widely used in different areas such
as military, agriculture, and planetary exploration due to
their high mobility in unstructured environments [1]. The
motion direction is changed by adjusting relative velocities
of both tracks. However, complex track/ground interactions
resulting from significant slippage during steering make it
difficult to obtain an accurate motion prediction.Themotion
prediction is a numerical integration of the equations of
motion, in which a slip model is used to determine how the
vehicle will respond to the commanded track speed controls
[2]. Prediction errors can be significantly reduced with an
accurate slip model.

Fully mastering track/terrain interaction of track vehicles
requires an in-depth understanding of terramechanics and
vehicle dynamics, and much work has been completed by
scholars [3]. However, this kind of models focuses on the
mechanics of skid steering rather than the navigation of
unmanned tracked vehicles [4, 5]. In autonomous vehicle
applications, research about modeling of skid steer vehicle

can be divided into two areas.The first area studies simplified
dynamics of the vehicle-terrain interaction [6–8]. The core
hypothesis of this area is that the tractive force can be
expressed as a function of slip. The other area utilizes
kinematic models and external measuring devices, such as
visual odometry, inertial measurement units (IMUs), and
global positioning system (GPS), to estimate slip or the
instantaneous centers of rotation (ICRs) locations [5, 9–
11]. In terms of real time, slip parameters can be identified
offline and online. The slip coefficients are obtained as an
exponential function of radius of curvature of the path based
on experimental analysis in [1]. Reference [4] proposes an
effective kinematics approximation and optimizes constant
ICR positions for a particular terrain using a genetic algo-
rithm. In [12], sliding parameters of agricultural tracked robot
are estimated online based on the unscented Kalman filter.
Further work for slip estimation online is done in [5, 13, 14],
where the extended Kalman filter is utilized.

In this paper, we propose an online slip model identi-
fication method based on the work of Mart́ınez et al. [4]
and Seegmiller et al. [15]. Unlike the previously mentioned

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 6375652, 13 pages
http://dx.doi.org/10.1155/2016/6375652



2 Mathematical Problems in Engineering

(xc, yc)

O

Q

N

E
B

(xl , yl)

y

� l
s

P

�Pq

�y

o

wz

�x

x

�rs

�Qq

(xr, yr)

𝜃

Figure 1: Geometric and kinematic relationships of a tracked vehicle.

works, where ICRs locations are modeled as constant values,
we parameterize ICRs locations over the lateral acceleration
and curvature, which is more in line with reality because
of the close relation between the ICRs locations and vehicle
running conditions. ICRs provide a mapping between track
speeds and vehicle body forward and angle velocity. An EKF
is used to learn kinematic parameters online by utilizing
the difference between the predicted pose change and actual
experienced pose change from time 𝑡−Δ𝑡 to 𝑡.Thismethod is
superior to the traditional method in that it becomes possible
to estimate the slip and improve predicting accuracy only
using low-cost and low-frequency sensors because param-
eters are updated using the measured position rather than
the measured velocity. The new updated parameters are then
used to predict the future motion of vehicle in a short term.

The remaining sections are organized as follows. Section 2
describes a kinematic model of tracked vehicle based on
the ICRs of the tracks. In Section 3, we develop an EKF to
estimate kinematic parameters and predict the future vehicle
motion in a short term. Simulations are designed to test the
proposed algorithm in Section 4. In Section 5, validation
experiments with a real tracked vehicle and the results are
presented. Finally, we conclude the paper and discuss future
works in Section 6.

2. Slip Models of Tracked Vehicles
Based on the ICRs

2.1. Kinematics Relationship. As mentioned earlier, due to
uncertain soil parameters, the mechanics of tracks/ground
interaction are not competent to navigation for autonomous
tracked vehicles. Alternatively, we concentrate here on devel-
oping an effective kinematic model based on ICRs locations.

Figure 1 shows the geometric and kinematic relationships
of a tracked vehicle when turning on a flat ground. The
vehicle’s barycenter is assumed to be coincided with its
geometric center. We define an inertial frame (𝐸-𝑂-𝑁) and
a local vehicle frame (𝑥-𝑜-𝑦). The origin of vehicle frame
is located at the vehicle’s geometric center and its 𝑥-axis is

aligned with the forward motion direction. In the figure,
(V
𝑥
, V
𝑦
) are forward and lateral velocity of the vehicle mass

center and𝑤
𝑧
is its angular velocity. 𝑃 and𝑄 are points in the

contact surface of tracks with ground. V
𝑃𝑞

and V
𝑄𝑞

are vehicle
body’s velocities at points 𝑃 and 𝑄, also called convected
velocity. V𝑙

𝑠
and V𝑟

𝑠
are tracks rolling speeds relative to the

vehicle body. 𝐵 is the distance between tracks centerlines.
When moving on a plane, the vehicle can be regarded as

a rigid body and its motion can be represented by a rotation
(ICR
𝑐
= (𝑥
𝑐
, 𝑦
𝑐
)) around its instantaneous centers of rotation.

In order to study the influence of slippage on vehicle motion,
the tracks’ motion on the contact surface with ground cannot
be ignored. Tracks can also be regarded as rigid bodies with
one more degree of freedom than vehicle body [4].This extra
degree of freedom is its rolling speed. ICR

𝑙
= (𝑥
𝑙
, 𝑦
𝑙
) and

ICR
𝑟
= (𝑥
𝑟
, 𝑦
𝑟
) denote ICRs of left and right tracks in the

local body frame, respectively. The three ICRs locations lie
along a line which is parallel to the local 𝑦-axis.

As the motions of both tracks can be regarded as pure
rotations around their instantaneous centers of rotations ICR

𝑙

and ICR
𝑟
, we write the absolute velocity of points 𝑃 and 𝑄 as

V
𝑃
= (𝑦
𝑙
−
𝐵

2
)𝑤
𝑧

V
𝑄
= (𝑦
𝑟
− (−

𝐵

2
))𝑤
𝑧
.

(1)

On the other hand, the motion of a point in the contact
surface of trackswith ground is the composition of the vehicle
body’s motion (V

𝑃𝑞
and V
𝑄𝑞
) and tracks rolling (V𝑙

𝑠
and V𝑟
𝑠
). So

the absolute velocity of points 𝑃 and 𝑄 can also be expressed
as

V
𝑃
= V
𝑃𝑞
− V𝑙
𝑠

V
𝑄
= V
𝑄𝑞
− V𝑟
𝑠
.

(2)
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Given the forward velocity of the vehicle barycenter V
𝑥

and angular velocity𝑤
𝑧
, the vehicle body’s velocities at points

𝑃 and 𝑄 are given by

V
𝑃𝑞
= V
𝑥
−
𝐵

2
𝑤
𝑧

V
𝑄𝑞
= V
𝑥
+
𝐵

2
𝑤
𝑧
.

(3)

Combining (1)∼(3), the ICRs positions of vehicle body
and both tracks are as follows:

𝑦
𝑐
=

V
𝑥

𝑤
𝑧

(4)

𝑦
𝑙
=
V
𝑥
− V𝑙
𝑠

𝑤
𝑧

(5)

𝑦
𝑟
=
V
𝑥
− V𝑟
𝑠

𝑤
𝑧

(6)

𝑥
𝑙
= 𝑥
𝑟
= 𝑥
𝑐
= −

V
𝑦

𝑤
𝑧

. (7)

Equations (4)∼(7) reveal the underlying relationship
between ICRs and the tracks rolling speed. Remarkably, the
values of 𝑦

𝑐
can reach infinity if the vehicle runs along a

straight line.However, the values of𝑦
𝑙
, 𝑦
𝑟
, and𝑥

𝑐
are bounded

in any case. This is because of the fact that numerators and
denominators in (5)∼(7) are infinitesimals of the same order
when the angular velocity 𝑤

𝑧
is close to zero [4].

2.2. Slip Models Based on the ICRs. Without considering
slippage, the equations of motion for differential driven
vehicles are

𝑑𝐸

𝑑𝑡
=
V𝑙
𝑠
+ V𝑟
𝑠

2
sin (𝜃)

𝑑𝑁

𝑑𝑡
=
V𝑙
𝑠
+ V𝑟
𝑠

2
cos (𝜃)

𝑑𝜃

𝑑𝑡
= −

V𝑙
𝑠
− V𝑟
𝑠

𝐵
,

(8)

where P = (𝐸,𝑁, 𝜃)
𝑇 is the vector that describes position

coordinates and heading of the vehicle in the global inertial
frame. 𝐸 denotes the east direction and𝑁 denotes the north
direction.Thismodel is also called nominal kinematicmodel,
where the forward velocity is directly from the tracks rolling
speeds and the lateral velocity is equal to zero.

Given a set of tracks velocities sequence {(V𝑙
𝑠1
, V𝑟
𝑠1
),

(V𝑙
𝑠2
, V𝑟
𝑠2
) ⋅ ⋅ ⋅ (V𝑙

𝑠𝑛
, V𝑟
𝑠𝑛
)} at time 𝑡

0
, the vehicle trajectory can be

obtained from the time integration of (8). However, due to
assumingno slip, the predicted trajectory is certainly deviated
from the actual experienced trajectory. Now let us develop a
new model, where slippage is taken into account.

The forward, lateral, and rotation velocity of the vehicle
can be expressed as a function of tracks rolling speeds and
track ICRs positions by solving (4)∼(7). One has

V
𝑥
=
𝑦
𝑙
V𝑟
𝑠
− 𝑦
𝑟
V𝑙
𝑠

𝑦
𝑙
− 𝑦
𝑟

V
𝑦
=

V𝑙
𝑠
− V𝑟
𝑠

𝑦
𝑙
− 𝑦
𝑟

𝑥
𝑐

𝑤
𝑧
= −

V𝑙
𝑠
− V𝑟
𝑠

𝑦
𝑙
− 𝑦
𝑟

.

(9)

In the global frame, the kinematic differential equations
of motion for tracked vehicle are built.

𝑑P
𝑑𝑡

=
[
[

[

sin (𝜃) − cos (𝜃) 0
cos (𝜃) sin (𝜃) 0

0 0 1

]
]

]

[
[

[

V
𝑥

V
𝑦

𝑤
𝑧

]
]

]

=
[
[

[

sin (𝜃) −cos (𝜃) 0
cos (𝜃) sin (𝜃) 0

0 0 1

]
]

]



𝑦
𝑙
V𝑟
𝑠
− 𝑦
𝑟
V𝑙
𝑠

𝑦
𝑙
− 𝑦
𝑟

V𝑙
𝑠
− V𝑟
𝑠

𝑦
𝑙
− 𝑦
𝑟

𝑥
𝑐

−
V𝑙
𝑠
− V𝑟
𝑠

𝑦
𝑙
− 𝑦
𝑟



.

(10)

Equation (10) indicates that, given particular tracks
rolling speeds sequence {(V𝑙

𝑠1
, V𝑟
𝑠1
), (V𝑙
𝑠2
, V𝑟
𝑠2
) ⋅ ⋅ ⋅ (V𝑙

𝑠𝑛
, V𝑟
𝑠𝑛
)}, the

motion of the vehicle can be accurately predicted by integrat-
ing the equation as long as tracks ICRs locations (𝑦

𝑙
, 𝑦
𝑟
, 𝑥
𝑐
)

could be properly estimated in real time.
Although they are bounded to a region, the ICRs of tracks

vary over space and time, which depend on the vehicle states
and terrain characteristics. Pentzer et al. [5] model the ICRs
locations as constants disturbed by random noise. In view
of the fact that slippage is closely related to centrifugal force
and radius, we assume ICRs locations can be represented as
a function of absolute values of the lateral acceleration and
curvature as follows:

𝑦
𝑙
=
𝐵

2
+ 𝑞
1


(V𝑙
𝑠
− V𝑟
𝑠
) (V𝑙
𝑠
+ V𝑟
𝑠
)

+ 𝑞
2



(V𝑙
𝑠
− V𝑟
𝑠
)

(V𝑙
𝑠
+ V𝑟
𝑠
)



𝑦
𝑟
= −

𝐵

2
+ 𝑞
3


(V𝑙
𝑠
− V𝑟
𝑠
) (V𝑙
𝑠
+ V𝑟
𝑠
)

+ 𝑞
4



(V𝑙
𝑠
− V𝑟
𝑠
)

(V𝑙
𝑠
+ V𝑟
𝑠
)



𝑥
𝑐
= 𝑞
5


(V𝑙
𝑠
− V𝑟
𝑠
) (V𝑙
𝑠
+ V𝑟
𝑠
)

+ 𝑞
6



(V𝑙
𝑠
− V𝑟
𝑠
)

(V𝑙
𝑠
+ V𝑟
𝑠
)



,

(11)

where 𝐵 is the distance between track centerlines; V𝑙
𝑠
and

V𝑟
𝑠
are left and right tracks’ rolling speeds, respectively. The

product of these two rolling speeds denotes vehicle’s lateral
acceleration and the division denotes vehicle’s curvature.The
column vector q = (𝑞

1
, 𝑞
2
, 𝑞
3
, 𝑞
4
, 𝑞
5
, 𝑞
6
)
𝑇 is identified in the

next section.
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Figure 2: ICRs locations estimation and future motion predicting.

Combining (10) and (11), we obtain the complete slip
model of tracked vehicles as

𝑑P (𝑡)
𝑑𝑡

= 𝑓 (P (𝑡) ,C (q (𝑡))) , (12)

where P(𝑡) = (𝐸(𝑡),𝑁(𝑡), 𝜃(𝑡))𝑇 is the vehicle’s position coor-
dinates and heading in the global inertial frame. C(q(𝑡)) =
(𝑦
𝑙
(𝑞
1
(𝑡), 𝑞
2
(𝑡)), 𝑦

𝑟
(𝑞
3
(𝑡), 𝑞
4
(𝑡)), 𝑥

𝑐
(𝑞
5
(𝑡), 𝑞
6
(𝑡)))
𝑇 is the vector

describing tracks ICRs locations, which can be expressed by
the unknown parameters as shown in (11).

3. Kinematic Parameters Estimation and
Motion Prediction

In this section, an extended Kalman filter (EKF) is used
to update the parameters q in real time by comparing
the predicted pose change and the actual experienced pose
change.The new updated parameters are then used to predict
the future motion of vehicle in a short term.The flow chart of
the system is shown in Figure 2.

Given these parameters and particular tracks velocities
sequence {(V𝑙

𝑠
, V𝑟
𝑠
)
𝑡
1

, (V𝑙
𝑠
, V𝑟
𝑠
)
𝑡
2

⋅ ⋅ ⋅ (V𝑙
𝑠
, V𝑟
𝑠
)
𝑡
𝑛

}, the vehicle motion
trajectory is obtained by integrating (12):

P (𝑡
𝑛
) = P (𝑡

0
) + ∫

𝑡
𝑛

𝑡
0

𝑓 (P (𝜏) ,C (q (𝜏))) 𝑑𝜏. (13)

The equation is written in discrete-time form as

P (𝑘
𝑛
) = P (𝑘

0
) + Δ𝑇

𝑘
𝑛

∑

𝑘=𝑘
0

𝑓 (P (𝑘) ,C (q (𝑘))) , (14)

where Δ𝑇 is the sampling period of tracks rolling speeds.
We define the parameters q = (𝑞

1
, 𝑞
2
, 𝑞
3
, 𝑞
4
, 𝑞
5
, 𝑞
6
)
𝑇 as state

variables; then the state equation is

q (𝑘) = q (𝑘 − 1) + w (𝑘) w (𝑘) ∼ 𝑁 (0, 𝑄 (𝑘)) , (15)

where w(𝑘) is the process noise.

The difference between predicted pose change and actual
experienced pose change for the last few seconds is given as

z (𝑘) = (P (𝑘) − P (𝑘 − 𝑛))prediction

− (P (𝑘) − P (𝑘 − 𝑛))actual .
(16)

The predicted pose change can be calculated by (14). The
actual pose change is unknown, but the observed pose change
is available from position and heading sensors. Considering
the noise of sensors, the measurement equation is written as

z (𝑘) = ΔP (𝑘)predicted − ΔP (𝑘)actual

= Δ𝑇

𝑘

∑

𝑡=𝑘−𝑛

𝑓 (P (𝑡) ,C (q (𝑡))) − ΔP (𝑘)observed

+ k (𝑘) = h (q (𝑘)) + k (𝑘) ,

(17)

where P(𝑘) = (𝑁(𝑘), 𝐸(𝑘), 𝜃(𝑘))
𝑇 is vehicle’s position and

heading in the global inertial frame. The function 𝑓(P(𝑡),
C(q(𝑡))) is given by (18). k(𝑘) is the measurement noise.

𝑓 (P (𝑡) ,C (q (𝑡))) = (

�̇� (𝑡)

�̇� (𝑡)

�̇� (𝑡)

)

=
[
[

[

sin (𝜃 (𝑡)) − cos (𝜃 (𝑡)) 0
cos (𝜃 (𝑡)) sin (𝜃 (𝑡)) 0

0 0 1

]
]

]
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×

[
[
[
[
[
[
[
[
[
[
[

[

𝑦
𝑙
(𝑞
1
(𝑡) , 𝑞
2
(𝑡)) V𝑟
𝑠
(𝑡) − 𝑦

𝑟
(𝑞
3
(𝑡) , 𝑞
4
(𝑡)) V𝑙
𝑠
(𝑡)

𝑦
𝑙
(𝑞
1
(𝑡) , 𝑞
2
(𝑡)) − 𝑦

𝑟
(𝑞
3
(𝑡) , 𝑞
4
(𝑡))

(V𝑙
𝑠
(𝑡) − V𝑟

𝑠
(𝑡)) ⋅ 𝑥

𝑐
(𝑞
5
(𝑡) , 𝑞
6
(𝑡))

𝑦
𝑙
(𝑞
1
(𝑡) , 𝑞
2
(𝑡)) − 𝑦

𝑟
(𝑞
3
(𝑡) , 𝑞
4
(𝑡))

V𝑟
𝑠
(𝑡) − V𝑙

𝑠
(𝑡)

𝑦
𝑙
(𝑞
1
(𝑡) , 𝑞
2
(𝑡)) − 𝑦

𝑟
(𝑞
3
(𝑡) , 𝑞
4
(𝑡))

]
]
]
]
]
]
]
]
]
]
]

]

.

(18)

The Jacobian matrixH(𝑘) for (17) is calculated as

H (𝑘) =
𝜕h (q (𝑘))

𝜕q

= Δ𝑇

𝑘

∑

𝑡=𝑘−𝑛

𝜕𝑓 (P (𝑡) ,C (q (𝑡)))
𝜕q

q(𝑡)

.

(19)

Now, we express the process in a standard form of EKF.
The process update equations are

q̂−
𝑘
= q̂−
𝑘−1

P−
𝑘
= P
𝑘−1

+Q
𝑘

(20)

and the measurement update equations are

K
𝑘
= P−
𝑘
H
𝑘

T
(H
𝑘
P−
𝑘
H
𝑘

T
+ R
𝑘
)
−1

q̂
𝑘
= q̂−
𝑘
+ K
𝑘
(z
𝑘
− h (q̂−

𝑘
))

P
𝑘
= (I − K

𝑘
H
𝑘
)P−
𝑘
,

(21)

where R
𝑘
is the measurement covariance. The noise of

measurements includes the noise of encoders for tracks
rolling speeds and the noise of pose sensors.

Given the tracks rolling speeds consequence, the future
motion will be predicted using the current estimated param-
eters. Then, in the next iteration, the residual errors between
the measurement and prediction are computed and used to
update the parameters q as well as the ICRs locations.

It is noted that the vehicle’s pose is not included in the
state variables, because we care about predicting the vehicle’s
future motion rather than obtaining the current pose. In fact,
the pose sensors used in this paper are sufficiently accurate,
and the parameters q construct a map between tracks rolling
speeds and the vehicle’s future motion considering the effects
of track/ground interactions.

4. Simulation and Analysis

4.1. Response to Changing Abruptly ICRs Locations. To verify
the effectiveness of the proposed algorithm, simulations have
been conducted in Matlab. The ICRs locations of tracks are
set to change abruptly, which may occur when the vehicle
drives from one terrain to another: 𝑦

𝑙
from 1.23m to 2.23m,

𝑦
𝑟
from −1.23m to −2.23m, and 𝑥

𝑐
from 0 to 0.5m. The

measurement errors of position and heading follow theGauss
distribution with mean [0 0 0]

𝑇 and standard deviation
[0.02m 0.02m 0.01 deg]𝑇, which are similar to the errors
of sensor devices we use in experiments. The trajectory is set
to be a mix of straight line and arc, and the ICRs locations
change occurs at the junction point of straight line and
arc. Figure 3 shows the position of the vehicle and tracks
velocities.
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Figure 4: Comparison of the estimated values and real values of ICRs locations.
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Figure 5: The coefficients variation over time.

When tracked vehicles cross terrain boundaries, it is
important for the autonomous navigation system to detect
rapidly the slippage change and adjust the forward predictive
model to adapt the new terrain.

Figure 4 shows this phenomenon, where ICRs values
converge to the true values only within a second when they
change abruptly at 2 s and 12 s. From 0 s to 2 s, the vehicle
is driving in a straight line by commanding a track velocity
of 2m/s, and at 2nd second, the right track velocity is set
to be 1m/s as well as the ICRs locations being changed. The
estimated ICRs by EKF change from initial values to the true
values in response to the condition.

The coefficient q, which is given in (11), over the algorithm
running is shown in Figure 5. All of the parameters are

initialized to zero and respond immediately to the changed
condition at 2nd second. Note that 𝑞

2
, 𝑞
4
, and 𝑞

6
are much

smaller than 𝑞
1
, 𝑞
3
, and 𝑞

5
. This means ICRs are more

sensitive to the lateral acceleration than curvature.
The aim of estimating ICRs locations and parameters is

to predict the vehicle’s future motion in a short term. The
algorithm runs continuously during vehicle driving, so the
vehicle’s future motion is predicted in real time. Figure 6
shows the predicted position and heading errors with EKF
and no-slip prediction at the end of the next two-second path.
The position error is reduced from 0.7m to less than 0.1m
and the heading error is reduced from 0.3 rad to near zero.
Significant reduction of prediction errors, in turn, is a good
evidence for the estimation correctness.
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Figure 6: Two-second predicted errors with EKF and no slip.
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Figure 7: Comparison of estimated ICRs locations using position and velocity.

4.2. Response to Low-Frequency Pose Sensors. In traditional
methods [5], the vehicle body’s velocity that is obtained
by differentiating the measured position is used to update
the state. Therefore, it requires small sample periods to
ensure the validity velocity. However, high-frequency mea-
surements are not obtained at all the time and low frequency
means low cost. In this section, we investigate the proposed
algorithm’s performance using low-frequency pose sensors.
The results obtained using this method are compared to
those obtained using the traditional method with the same
source data. The measurement frequencies of position and
heading are set to 1Hz and the frequency of encoders is
10Hz.

The results, shown in Figure 7, indicate that estimated
ICRs locations converge quickly to the true values using the
proposed method. In contrast, the estimated ICRs locations
are far from the true values using the traditionalmethod. Due
to the more accurate slip model, the position and heading
prediction errors for the next two seconds are reduced
significantly, as shown in Figure 8.

5. Experimental Results with
a Real Tracked Vehicle

5.1. Tracked Vehicle and Test Scenarios Description. Experi-
ments for this work are conducted on a tracked vehicle with
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Figure 8: Comparison of position and heading errors using two methods.

a weight of 13.6 tons as depicted in Figure 9(a). The distance
between the centers of the left and right tracks is 2.464m.The
real-time kinematic (RTK) GPS and an IMU are utilized for
ground truth position and heading measurements. The left
and right track velocities are observed by encoders at 100Hz.
The EKF and motion predictions are implemented once
pose measurements are updated at 10Hz. In this experiment,
the tracked vehicle is driven by humans over dirt terrain,
as shown in Figure 9(c). The left track is blocked with
nonrotating, while the right track velocity is about 2m/s,
as shown in Figure 10, which is the best case for observing
slippage.

5.2. Algorithm Performance. The absolute values of predic-
tion residuals with slip and no slip are compared in Figure 11.
The mean position error is reduced from 1.116m to 0.262m
and the heading error is reduced from 0.317 rad to 0.081 rad,
reducing by 76.5% and 74.4%, respectively, as shown in
Table 1.

ICRs locations and the kinematic parameters are also
estimated in Figures 12 and 13.

Figure 14 shows the visualization estimated trajectories
for the next 2 s and ultimately experienced trajectories. For
the sake of clarity, trajectories are shown every 2 s, despite
the fact that the cycle is 100 milliseconds, starting at the 4th s
and ending at the 16th s. Green lines and red lines are no-
slip estimated and EKF estimated trajectories for the next
2 s, respectively, and blue triangles are the actual experience
trajectories. The filled circles with green, red, and blue in the
same ellipsoid denote the vehicle’s position at the end of the
next 2 s. For example, at the 6th second, the slip parameters
have been estimated according to the difference between the
past predicted pose change and the experienced pose change.
Then the current slip parameters and the linear velocities of
both tracks from 6th s to 8th s, which have been recorded, are
used as inputs for the predictivemodel with slip and no slip to
predict the vehicle’s futuremotion from 6th s to 8th s.The red
line is represented as the predicted trajectory considering slip,

Table 1: Comparison results.

Prediction errors No slip EKF % by reduced error
Position error (m) 1.116 0.262 76.5
Heading error (rad) 0.317 0.081 74.4

Table 2: Comparison results in the case of RTK GPS outages.

Prediction errors No slip EKF % by reduced error
Position error (m) 1.116 0.841 24.6
Heading error (rad) 0.317 0.083 73.8

while the green line is represented as the predicted trajectory
without slip.

ICRs locations change rapidly at the 12th s in Figure 12,
indicating that the vehicle is driving from turning to a straight
line, just as what we can see in Figure 14. When the vehicle
is turning, the EKF prediction is much better than no-
slip; however, during straight sections, there is not obvious
difference between the two kinds of methods.This is because
when the vehicle moves along a straight line, 𝑦

𝑙
, 𝑦
𝑟
, and 𝑥

𝑐
are

convergent to 𝐵/2, −𝐵/2 and zero, respectively (𝐵 is the width
between the left and right tracks).

5.3. Algorithm Performance in the Case of RTK GPS Outages.
RTK GPS may black out when the tracked vehicle drives in
field environment, for example, under a bridge. The filter
was reprocessed again without position measurements. The
parameters q and the ICRs locations are updated only using
heading measurement, which is obtained from the IMU.
The prediction residuals are shown in Figure 15. Compared
to Figure 11, the position error with slip increases, while
the angle error is nearly indistinguishable. The position and
heading reduction rate compared with no-slip prediction are
24.6% and 73.8%, respectively, as shown in Table 2.

ICRs locations and the kinematic parameters are shown
in Figures 16 and 17. The values of 𝑦

𝑙
and 𝑦

𝑟
are similar to
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Figure 9: Test platform, sensors, and experimental surfaces.
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Figure 10: Measured tracks velocity from encoders.
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Figure 11: Two-second predicted residuals with EKF and no slip.
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Figure 12: Estimated values of ICRs locations.

the ones in Figure 12, while the values of 𝑥
𝑐
are much smaller

than the ones in Figure 12. The fifth and sixth elements in the
matrix q are near zero. These changes can be explained by
(10), where 𝑥

𝑐
is not contained within the third subequation.

Heading is obtained by integrating the third subequation of
(10) and 𝑦

𝑙
and 𝑦
𝑟
are only identified by the comparison of the

calculated and measured heading.
The position errors distribution in two directions of north

and east is investigatedwithRTKGPS,without RTKGPS, and
with no-slip prediction, as shown in Figure 18. The results
indicate that although the prediction accuracy is decreased
during RTK GPS dropouts, the EKF performance is better
than no-slip.

6. Conclusion

In this paper, we have developed and identified a slip model
of tracked vehicles based on the instantaneous centers of
rotation of the two tracks. ICRs locations were parameterized
over the lateral acceleration and curvature rather than being
modeled as constant like previous works. An EKF method
was applied to estimate the ICRs locations of tracked vehicles
in real time using low-cost and low-frequency sensors.
Given the estimated kinematic parameters and tracks veloc-
ities sequence, a more accurate vehicle motion could be
obtained for the next few seconds. Experiments indicated
that proposed algorithm is capable of improving predicting
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Figure 13: Kinematic parameters’ variation over time.
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Figure 15: Two-second predicted residuals with EKF and no slip in the case of RTK GPS outages.
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Figure 16: Estimated values of ICRs locations in the case of RTK GPS outages.
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Figure 17: Kinematic parameters’ variation over time in the case of
RTK GPS outages.

accuracy significantly and estimating ICRs locations correctly
online.

We note that while the slip model offers a significant
improvement to motion prediction, it is only a submodel
of the abstract vehicle model to predict the future when
commanded vehicle body linear and angular velocity controls
are given. The vehicle dynamics model is another part of
the abstract vehicle model, which creates a mapping between
the left and right tracks’ velocities and the command inputs.
Therefore, in order to predict more accurately vehicle’s
motion, the vehicle dynamics model will be identified simul-
taneously in future work.
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Figure 18: Comparison of position errors distribution with RTK
GPS, without RTK GPS, and with no-slip prediction.
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