37 research outputs found

    Mycobacterium tuberculosis Rv3586 (DacA) Is a Diadenylate Cyclase That Converts ATP or ADP into c-di-AMP

    Get PDF
    Cyclic diguanosine monophosphate (c-di-GMP) and cyclic diadenosine monophosphate (c-di-AMP) are recently identified signaling molecules. c-di-GMP has been shown to play important roles in bacterial pathogenesis, whereas information about c-di-AMP remains very limited. Mycobacterium tuberculosis Rv3586 (DacA), which is an ortholog of Bacillus subtilis DisA, is a putative diadenylate cyclase. In this study, we determined the enzymatic activity of DacA in vitro using high-performance liquid chromatography (HPLC), mass spectrometry (MS) and thin layer chromatography (TLC). Our results showed that DacA was mainly a diadenylate cyclase, which resembles DisA. In addition, DacA also exhibited residual ATPase and ADPase in vitro. Among the potential substrates tested, DacA was able to utilize both ATP and ADP, but not AMP, pApA, c-di-AMP or GTP. By using gel filtration and analytical ultracentrifugation, we further demonstrated that DacA existed as an octamer, with the N-terminal domain contributing to tetramerization and the C-terminal domain providing additional dimerization. Both the N-terminal and the C-terminal domains were essential for the DacA's enzymatically active conformation. The diadenylate cyclase activity of DacA was dependent on divalent metal ions such as Mg2+, Mn2+ or Co2+. DacA was more active at a basic pH rather than at an acidic pH. The conserved RHR motif in DacA was essential for interacting with ATP, and mutation of this motif to AAA completely abolished DacA's diadenylate cyclase activity. These results provide the molecular basis for designating DacA as a diadenylate cyclase. Our future studies will explore the biological function of this enzyme in M. tuberculosis

    Molecular Pathogenesis of Pneumococcus

    No full text
    Streptococcus pneumoniae has been for decades the number one bacterial killer of children in the world. Although vaccination with pneumococcal vaccines [PCV7, PCV10, and PCV13 (children) or PPSV23 (adults)] has helped decrease the burden of pneumococcal disease (PD), mortality remains high. Therefore, pathogenesis studies are still key toward our understanding of PD and its control. The introduction of pneumococcal vaccines has also created a niche for vaccine-escape clones. Moreover, the rise of multi-drug resistant clones around the world has also posed a serious threat in recent years. The proposed special issue of Frontiers in Cellular and Infection Microbiology highlights many of the recent advances that have been made in pneumococcal pathogenesis, colonization and antibiotic resistance by groups in Latino America, Europe, and the USA

    Editorial: Molecular Pathogenesis of Pneumococcus

    No full text

    Research on the General Failure Law of a CTRC Column by Modeling FEM Output Data

    No full text
    In this paper, a finite element model (FEM) is developed based on a set of circular steel tube reinforced concrete (CTRC) columns with axial compression and eccentric compression tests. The stressing state characteristics of the FEM are modeled in the form of characteristic pairs (mode-characteristic parameters) based on the structural stressing state theory and the proposed correlation modeling method. The slope increasing criterion is applied to the correlation characteristic parameter curve to obtain the characteristic point Q where the CTRC stressing state undergoes a qualitative change, and the characteristic point Q is defined as the new failure load point of the CTRC column. By selecting the element strain energy density at different locations of the FEM for correlation stressing state modeling and dividing the correlation stressing state sub-modes (concrete, steel tube, vertical reinforcement, and stirrup reinforcement), the structural stressing state theory and the rationality of the proposed correlation stressing state modeling method are verified. In addition, the certainty and reasonableness of the failure load points of the CTRC columns are revealed and verified

    Stressing State Analysis of SRC Column with Modeling Test and Finite Element Model Data

    No full text
    This paper reveals the failure characteristic points of the spiral reinforced column during the damage process by modeling and analyzing the stressing state of the column with the test and finite element output data. At the same time, the structural stressing state theory and the correlation modeling analysis method’s applicability to spiral reinforced concrete columns are verified. First, a finite element model was established based on the literature’s spiral reinforced concrete column tests. Then, correlation modeling was performed on the test strain data to obtain correlation characteristic pairs (mode-characteristic parameters), and stressing state modeling was performed on the internal energy and element strain energy data from the finite element model to obtain stressing state characteristic pairs. The slope increment criterion is applied to the obtained stressing state characteristic parameter curves to reveal the characteristic point Q, defined as the failure starting point. The reasonableness of the failure starting point is further verified by observing the cloud diagram of the finite element model in the vicinity of the characteristic point Q. In general, the correlation modeling method proposed in this paper can provide a new reference for structural stressing state analysis. In addition, the failure starting point of spiral reinforced concrete columns revealed in this paper can be used as a design reference

    Stressing State Analysis of SRC Column with Modeling Test and Finite Element Model Data

    No full text
    This paper reveals the failure characteristic points of the spiral reinforced column during the damage process by modeling and analyzing the stressing state of the column with the test and finite element output data. At the same time, the structural stressing state theory and the correlation modeling analysis method’s applicability to spiral reinforced concrete columns are verified. First, a finite element model was established based on the literature’s spiral reinforced concrete column tests. Then, correlation modeling was performed on the test strain data to obtain correlation characteristic pairs (mode-characteristic parameters), and stressing state modeling was performed on the internal energy and element strain energy data from the finite element model to obtain stressing state characteristic pairs. The slope increment criterion is applied to the obtained stressing state characteristic parameter curves to reveal the characteristic point Q, defined as the failure starting point. The reasonableness of the failure starting point is further verified by observing the cloud diagram of the finite element model in the vicinity of the characteristic point Q. In general, the correlation modeling method proposed in this paper can provide a new reference for structural stressing state analysis. In addition, the failure starting point of spiral reinforced concrete columns revealed in this paper can be used as a design reference

    Stressing state features of H-steel columns under cyclic biaxial bending action revealed from experimental residual strains

    No full text
    In this paper, the stressing state modeling analysis of the residual strain data of H-steel columns reveals three characteristic points that exist during the failure of H-steel columns. Also, the correctness of the stressing state analysis method, residual, and buckling characteristic pairs was verified. First, the experimental residual strains were transformed into generalized strain energy density (GSED) values as the state variables for establishing the stressing state mode and characteristic parameters (characteristic pairs). The Mann-Kendall (M-K) criterion is applied to the normalized GSED sum-j curves to reveal the characteristic points P, Q, and U of the evolving stressing state of the H-steel column. Characteristic point P is defined as the elastic-plastic branch point of the H-steel column, characteristic point Q is defined as the failure starting point, and characteristic point U is defined as the progressive failure point. Around the characteristic points of the H-steel columns, the directly modeled stressing state characteristic pairs, residual characteristic pairs, and buckling characteristic pairs produce significant mutation characteristics. This phenomenon verifies the correctness of the revealed H-steel column characteristic points and the rationality of this paper's stressing state modeling method. Then, it is proposed that the elastic-plastic branch point P can be directly used as the design reference point, and it is compared with the design point given by Code EN1993–1–5. In conclusion, this paper provides new ideas for analyzing steel structures and opens up the value of residual strain data in structural analysis

    Genomics in Neurological Disorders

    No full text
    Neurological disorders comprise a variety of complex diseases in the central nervous system, which can be roughly classified as neurodegenerative diseases and psychiatric disorders. The basic and translational research of neurological disorders has been hindered by the difficulty in accessing the pathological center (i.e., the brain) in live patients. The rapid advancement of sequencing and array technologies has made it possible to investigate the disease mechanism and biomarkers from a systems perspective. In this review, recent progresses in the discovery of novel risk genes, treatment targets and peripheral biomarkers employing genomic technologies will be discussed. Our major focus will be on two of the most heavily investigated neurological disorders, namely Alzheimer’s disease and autism spectrum disorder

    The Importance of the Small RNA Chaperone Hfq for Growth of Epidemic Yersinia pestis, but Not Yersinia pseudotuberculosis, with Implications for Plague Biology â–¿

    No full text
    Yersinia pestis, the etiologic agent of plague, has only recently evolved from Yersinia pseudotuberculosis. hfq deletion caused severe growth restriction at 37°C in Y. pestis but not in Y. pseudotuberculosis. Strains from all epidemic plague biovars were similarly affected, implicating Hfq, and likely small RNAs (sRNAs), in the unique biology of the plague bacillus
    corecore