2,056 research outputs found

    Magnonic momentum transfer force on domain walls confined in space

    Full text link
    Momentum transfer from incoming magnons to a Bloch domain wall is calculated using one dimensional continuum micromagnetic analysis. Due to the confinement of the wall in space, the dispersion relation of magnons is different from that of a single domain. This mismatch of dispersion relations can result in reflection of magnons upon incidence on the domain wall, whose direct consequence is a transfer of momentum between magnons and the domain wall. The corresponding counteraction force exerted on the wall can be used for the control of domain wall motion through magnonic linear momentum transfer, in analogy with the spin transfer torque induced by magnonic angular momentum transfer.Comment: 5 pages, 3 figure, published versio

    Magnonic band structure of domain wall magnonic crystals

    Full text link
    Magnonic crystals are prototype magnetic metamaterials designed for the control of spin wave propagation. Conventional magnonic crystals are composed of single domain elements. If magnetization textures, such as domain walls, vortices and skyrmions, are included in the building blocks of magnonic crystals, additional degrees of freedom over the control of the magnonic band structure can be achieved. We theoretically investigate the influence of domain walls on the spin wave propagation and the corresponding magnonic band structure. It is found that the rotation of magnetization inside a domain wall introduces a geometric vector potential for the spin wave excitation. The corresponding Berry phase has quantized value 4nwπ4 n_w \pi, where nwn_w is the winding number of the domain wall. Due to the topological vector potential, the magnonic band structure of magnonic crystals with domain walls as comprising elements differs significantly from an identical magnonic crystal composed of only magnetic domains. This difference can be utilized to realize dynamic reconfiguration of magnonic band structure by a sole nucleation or annihilation of domain walls in magnonic crystals.Comment: 21 pages, 9 figure

    Mathematical Model of Dynamic Protein Interactions Regulating p53 Protein Stability for Tumor Suppression

    Get PDF
    In the field of cancer biology, numerous genes or proteins form extremely complex regulatory network, which determines cancer cell fate and cancer cell survival. p53 is a major tumor suppressor that is lost in more than 50% of human cancers. It has been well known that a variety of proteins regulate its protein stability, which is essential for its tumor suppressive function. It remains elusive how we could understand and target p53 stabilization process through network analysis. In this paper we discuss the use of random walk and stationary distribution to measure the compound effect of a network of genes or proteins. This method is applied to the network of nine proteins that influence the protein stability of p53 via regulating the interaction between p53 and its regulator MDM2. Our study identifies that some proteins such as HDAC1 in the network of p53 regulators may have more profound effects on p53 stability, agreeing with the established findings on HDAC1. This work shows the importance of using mathematical analysis to dissect the complexity of biology networks in cancer

    Non-classical properties and algebraic characteristics of negative binomial states in quantized radiation fields

    Get PDF
    We study the nonclassical properties and algebraic characteristics of the negative binomial states introduced by Barnett recently. The ladder operator formalism and displacement operator formalism of the negative binomial states are found and the algebra involved turns out to be the SU(1,1) Lie algebra via the generalized Holstein-Primarkoff realization. These states are essentially Peremolov's SU(1,1) coherent states. We reveal their connection with the geometric states and find that they are excited geometric states. As intermediate states, they interpolate between the number states and geometric states. We also point out that they can be recognized as the nonlinear coherent states. Their nonclassical properties, such as sub-Poissonian distribution and squeezing effect are discussed. The quasiprobability distributions in phase space, namely the Q and Wigner functions, are studied in detail. We also propose two methods of generation of the negative binomial states.Comment: 17 pages, 5 figures, Accepted in EPJ

    Entangled SU(2) and SU(1,1) coherent states

    Get PDF
    Entangled SU(2) and SU(1,1) coherent states are developed as superpositions of multiparticle SU(2) and SU(1,1) coherent states. In certain cases, these are coherent states with respect to generalized su(2) and su(1,1) generators, and multiparticle parity states arise as a special case. As a special example of entangled SU(2) coherent states, entangled binomial states are introduced and these entangled binomial states enable the contraction from entangled SU(2) coherent states to entangled harmonic oscillator coherent states. Entangled SU(2) coherent states are discussed in the context of pairs of qubits. We also introduce the entangled negative binomial states and entangled squeezed states as examples of entangled SU(1,1) coherent states. A method for generating the entangled SU(2) and SU(1,1) coherent states is discussed and degrees of entanglement calculated. Two types of SU(1,1) coherent states are discussed in each case: Perelomov coherent states and Barut-Girardello coherent states.Comment: 31 pages, no figure

    The Bc→ψ(2S)πB_c\rightarrow \psi(2S)\pi, ηc(2S)π\eta_c(2S)\pi decays in the perturbative QCD approach

    Full text link
    Nonleptonic two body BcB_c decays including radially excited ψ(2S)\psi(2S) or ηc(2S)\eta_c(2S) mesons in the final state are studied using the perturbative QCD approach based on kTk_T factorization. The charmonium distribution amplitudes are extracted from the n=2,l=0n = 2, l = 0 Schro¨\ddot{o}dinger states for the harmonic oscillator potential. Utilizing these distribution amplitudes, we calculate the numerical results of the Bc→ψ(2S),ηc(2S)B_c\rightarrow \psi(2S),\eta_c(2S) transition form factors and branching fractions of Bc→ψ(2S)π,ηc(2S)πB_c\rightarrow \psi(2S)\pi, \eta_c(2S)\pi decays. The ratio between two decay modes Bc→ψ(2S)πB_c\rightarrow \psi(2S)\pi and Bc→J/ψπB_c\rightarrow J/\psi\pi is compatible with the experimental data within uncertainties, which indicate that the harmonic oscillator wave functions for ψ(2S)\psi(2S) and ηc(2S)\eta_c(2S) work well. It is found that the branching fraction of Bc→ηc(2S)πB_c\rightarrow \eta_c(2S)\pi, which is dominated by the twist-3 charmonium distribution amplitude, can reach the order of 10−310^{-3}. We hope it can be measured soon in the LHCb experiment.Comment: 9 pages, 3 figures,3 Table
    • …
    corecore