882 research outputs found

    Topological energy gaps in the [111]-oriented InAs/GaSb and GaSb/InAs core-shell nanowires

    Full text link
    The [111]-oriented InAs/GaSb and GaSb/InAs core-shell nanowires have been studied by the 8×88\times 8 Luttinger-Kohn kp\vec{k}\cdot\vec{p} Hamiltonian to search for non-vanishing fundamental gaps between inverted electron and hole bands. We focus on the variations of the topologically nontrivial fundamental gap, the hybridization gap, and the effective gap with the core radius and shell thickness of the nanowires. The evolutions of all the energy gaps with the structural parameters are shown to be dominantly governed by quantum size effects. With a fixed core radius, a topologically nontrivial fundamental gap exists only at intermediate shell thicknesses. The maximum gap is 4.4\sim 4.4 meV for GaSb/InAs and 3.5\sim 3.5 meV for InAs/GaSb core-shell nanowires, and for the GaSb/InAs core-shell nanowires the gap persists over a wider range of geometrical parameters. The intrinsic reason for these differences between the two types of nanowires is that in the shell the electron-like states of InAs is more delocalized than the hole-like state of GaSb, while in the core the hole-like state of GaSb is more delocalized than the electron-like state of InAs, and both features favor stronger electron-hole hybridization. Since similar features of the electron- and hole-like states have been found in nanowires of other materials, it could serve as a common rule to put the hole-like state in the core while the electron-like state in the shell of a core-shell nanowire to achieve better topological properties.Comment: 10 pages, 10 figure

    The ground state entanglement in the XXZXXZ model

    Full text link
    In this paper, we investigate spin entanglement in the XXZXXZ model defined on a dd-dimensional bipartite lattice. The concurrence, a measure of the entanglement between two spins, is analyzed. We prove rigorously that the ground state concurrence reaches maximum at the isotropic point. For dimensionality d2d \ge 2, the concurrence develops a cusp at the isotropic point and we attribute it to the existence of magnetic long-range order.Comment: 5 pages, 2 figure

    Charge transport and electron-hole asymmetry in low-mobility graphene/hexagonal boron nitride heterostructures

    Full text link
    Graphene/hexagonal boron nitride (G/hh-BN) heterostructures offer an excellent platform for developing nanoelectronic devices and for exploring correlated states in graphene under modulation by a periodic superlattice potential. Here, we report on transport measurements of nearly 00^{\circ}-twisted G/hh-BN heterostructures. The heterostructures investigated are prepared by dry transfer and thermally annealing processes and are in the low mobility regime (approximately 3000 cm2V1s13000~\mathrm{cm}^{2}\mathrm{V}^{-1}\mathrm{s}^{-1} at 1.9 K). The replica Dirac spectra and Hofstadter butterfly spectra are observed on the hole transport side, but not on the electron transport side, of the heterostructures. We associate the observed electron-hole asymmetry to the presences of a large difference between the opened gaps in the conduction and valence bands and a strong enhancement in the interband contribution to the conductivity on the electron transport side in the low-mobility G/hh-BN heterostructures. We also show that the gaps opened at the central Dirac point and the hole-branch secondary Dirac point are large, suggesting the presence of strong graphene-substrate interaction and electron-electron interaction in our G/hh-BN heterostructures. Our results provide additional helpful insight into the transport mechanism in G/hh-BN heterostructures.Comment: 7 pages, 4 figure

    Experimental Decoy Quantum Key Distribution Up To 130KM Fiber

    Full text link
    Decoy State Quantum Key Distribution (QKD), being capable of beating PNS attack and uncon- ditionally secure, have become an attractive one recently. But, in many QKD systems, disturbances of transmission channel make quantum bit error rate (QBER) increase which limits both security distance and key bit rate of real-life decoy state QKD systems. We demonstrate the two-intensity decoy QKD with one-way Faraday-Michelson phase modulation system, which is free of channel dis- turbance and keeps interference fringe visibility (99%) long period, near 130KM single mode optical fiber in telecom (1550 nm) wavelength. This is longest distance fiber decoy state QKD system based on two intensity protocol.Comment: 4 pages, 2figure

    Physical accessible transformations on a finite number of quantum states

    Get PDF
    We consider to treat the usual probabilistic cloning, state separation, unambiguous state discrimination, \emph{etc} in a uniform framework. All these transformations can be regarded as special examples of generalized completely positive trace non-increasing maps on a finite number of input states. From the system-ancilla model we construct the corresponding unitary implementation of pure \to pure, pure \to mixed, mixed \to pure, and mixed \to mixed states transformations in the whole system and obtain the necessary and sufficient conditions on the existence of the desired maps. We expect our work will be helpful to explore what we can do on a finite set of input states.Comment: 7 page

    Phase diagram of a Bose-Fermi mixture in a one-dimensional optical lattice in terms of fidelity and entanglement

    Full text link
    We study the ground-state phase diagram of a Bose-Fermi mixture loaded in a one-dimensional optical lattice by computing the ground-state fidelity and quantum entanglement. We find that the fidelity is able to signal quantum phase transitions between the Luttinger liquid phase, the density-wave phase, and the phase separation state of the system; and the concurrence can be used to signal the transition between the density-wave phase and the Ising phase.Comment: 4 pages 3 figure

    Bosonization and phase Diagram of the one-dimensional t-J model

    Full text link
    We present an analytic study of the phase diagram of the one-dimensional t-J model and a couple of its cousins. To deal with the interactions induced by the no double occupancy constraints, we introduce a deformation of the Hubbard operators. When the deformation parameter Δ\Delta is small, the induced interactions are softened, accessible by perturbation theory. We combine bososnization with renormalization group techniques to map out the phase diagram of the system. We argue that when Δ1\Delta\to 1, there is no essential change in the phase diagram. Comparison with the existing results in the literature obtained by other methods justifies our deformation approach.Comment: 24 pages, 1 Figur
    corecore