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ABSTRACT

Although many pathogenic copy number variations (CNVs) are

associated with neuropsychiatric diseases, few of them have been

functionally characterised. Here we report multiple schizophrenia

cases with CNVabnormalities specific to unc-51-like kinase 4 (ULK4),

a serine/threonine kinase gene. Deletions spanning exons 21–34 of

ULK4 were present in 4 out of 3391 schizophrenia patients from the

International Schizophrenia Consortium, but absent in 3181 controls.

Deletions removing exons 33 and 34 of the large splice variant of

ULK4 also were enriched in Icelandic schizophrenia and bipolar

patients compared with 98,022 controls (P50.0007 for schizophrenia

plus bipolar disorder). Combining the two cohorts gives a P-value

less than 0.0001 for schizophrenia, or for schizophrenia plus

bipolar disorder. The expression of ULK4 is neuron-specific and

developmentally regulated. ULK4 modulates multiple signalling

pathways that include ERK, p38, PKC and JNK, which are involved

in stress responses and implicated in schizophrenia. Knockdown of

ULK4 disrupts the composition of microtubules and compromises

neuritogenesis and cell motility. Targeted Ulk4 deletion causes corpus

callosum agenesis in mice. Our findings indicate that ULK4 is a rare

susceptibility gene for schizophrenia.
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INTRODUCTION
Schizophrenia is a severe psychiatric disorder affecting about 1%

of the world population. Although heritability is estimated

between 60 and 80%, its genetic architecture remains elusive.

A few rare, but highly penetrant, copy number variants (CNVs)

account for ,2–3% of cases (International Schizophrenia

Consortium, 2008; Stefansson et al., 2008; Walsh et al.,

2008). However, very few specific susceptibility genes for

schizophrenia, for example Neurexin1, have been implicated

definitively by CNV analysis. In most cases CNVs are either too

rare to obtain statistical evidence for association or, when

recurrent, disrupt multiple genes. Association signals from

common genetic variants in genome-wide association studies

(GWAS) also are inconsistent, with only a small number showing

genome-wide significant associations (Stefansson et al., 2008;

O’Donovan et al., 2008; International Schizophrenia Consortium,

2009; Shi et al., 2011; Yue et al., 2011). There is now

overwhelming evidence of abnormalities of neurodevelopment

as well as of adult brain function in schizophrenia. A high

proportion of CNVs associated with schizophrenia are involved

in neurodevelopment in early life and neuronal integrity,

connectivity, signalling and synaptic plasticity in the adult

(Kirov et al., 2012). Clinical neuro-imaging studies have

demonstrated disturbed neuronal connectivity in schizophrenia.

Human post-mortem studies also revealed shorter and less

branched dendrites (Black et al., 2004; Guidotti et al., 2000)

and lower density of dendritic spines (Glantz and Lewis, 2000) in

schizophrenic brains. Numerous alterations in nerve-terminal

functions involving synaptic vesicle recycling, transmitter release

and cytoskeletal dynamics are found in anterior prefrontal cortex

and anterior cingulate cortex grey matter in schizophrenia.

Intriguingly, during a re-analysis of the CNV data from the

International Schizophrenia Consortium (ISC) (International

Schizophrenia Consortium, 2008), we discovered that unc-51-like

kinase 4 (ULK4) was deleted in four schizophrenia patients but not

in controls. We also found similar enrichment for ULK4 in

schizophrenia and bipolar Icelandic cases genotyped by deCODE

Genetics, Iceland. ULK4 is one of five members of the unc-51-like

serine/threonine kinase (STK) family that participates in a

conserved pathway involving both endocytosis and axon growth

(Ogura et al., 1994; Pelkmans et al., 2005; Tomoda et al., 2004). In

C. elegans, a mutation in the unc-51 gene results in stalled axon

outgrowth, increased axon numbers (short and stunted) and

abnormal accumulation of intracellular membranous structures

(Ogura et al., 1994). In Drosophila, Unc-51-mediated membrane

vesicle transport is pivotal for axonal and dendritic development. It

aids targeted localization of guidance molecules and organelles that

regulate the elongation and the compartmentalization of developing

neurons and motor-cargo assembly (Mochizuki et al., 2011).

Here, we not only show that deletions of ULK4 are associated

with schizophrenia, but also demonstrate the importance of ULK4

in the regulation of neurite elongation, neurite branching and

neuronal migration. We further show that ULK4 modulates the

neuronal cytoskeleton and regulates multiple signalling pathways

involving JNK, ERK and protein kinase C (PKC), all of which are

well known for their roles in neurite elaboration and cell

1Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK.
2Regenerative Medicine Institute, School of Medicine, National University of
Ireland Galway, Galway, Ireland. 3Department of Neurosurgery, Tangdu Hospital,
Xi’an, Shannxi 710038, China. 4College of Life Science, Hebei Normal University,
Hebei 050016, China. 5Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
200240, China. 6deCODE genetics, Sturlugata 8, IS-101 Reykjavı́k, Iceland.
7University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK.

*These authors contributed equally to this work

{Authors for correspondence (sanbing.shen@nuigalway.ie; c.mccaig@abdn.ac.uk)

This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution
and reproduction in any medium provided that the original work is properly attributed.

Received 9 July 2013; Accepted 30 October 2013

� 2014. Published by The Company of Biologists Ltd | Journal of Cell Science (2014) 127, 630–640 doi:10.1242/jcs.137604

630

mailto:sanbing.shen@nuigalway.ie
mailto:c.mccaig@abdn.ac.uk
http://creativecommons.org/licenses/by/3.0


Jo
ur

na
l o

f C
el

l S
ci

en
ce

migration. In addition, Ulk42/2 newborn mice displayed defects
in corpus callosum nerve fibres connecting the two hemispheres

of the brain. Our findings demonstrate that ULK4 is crucial to
brain development and a previously unidentified genetic risk
factor in schizophrenia.

RESULTS
CNV analysis of serine/threonine kinases
Previously the ISC genotyped CNVs in 3391 schizophrenic

patients and 3181 ancestrally matched controls. The CNV data
were stratified against population on the basis of the genome-
wide single nucleotide polymorphism (SNP) data, and there was

no evidence of major population stratification within each site
(International Schizophrenia Consortium, 2008). In this study, we
re-analysed CNVs of the ISC datasets against a total of 420 genes

with key words of ‘serine/threonine kinase (STK)’ on the UCSC
(University of California Santa Cruz) database (hg18), and
identified 124 patient CNVs (3.66%) and 75 control CNVs
(2.36%) carrying STK genes (Table 1; P50.0014, one-tailed

Chi-squared test with Yates correction), showing ,1.6 times
enrichment of STK CNVs in the schizophrenic population. A
summary of the STK CNVs is shown in supplementary material

Tables S1, S2.
Among the 124 STK CNVs in schizophrenia, TSSK2 (11

cases/1 control, P50.0064), STK38L (6 deletions in patients/1

duplication in control, P50.0765) and LRRK1 (3 cases/1 control,
P50.3313) were enriched in the disease. Five of the six STK38L

CNVs at 12p11.23 involved two other genes (ARNTL2 and

PPFIBP1) and 12p11.23 CNVs were also associated with 1/
708 Icelandic schizophrenia patients and 7/98,022 controls
(supplementary material Fig. S1). The PAK7 (6 cases, P50.0247),
SGK196 (6 cases, P50.0247), ULK4 (4 cases, P50.0753), MKNK1

(3 cases, P50.1356) and MAST4 (3 cases, P50.1356) CNVs were
unique in the patient group. The MKNK1, SGK196 and TSSK2 genes
were of less priority, as they were embedded in CNVs with many

flanking genes. The PAK7 and MAST4 CNVs were involved in
partial duplications. They were not chosen in this study because their
mode of disease mechanism was uncertain, although loss of function

was more likely.
We have focused on 3p22.1 deletions in this study because: (1)

the 3p22.1 deletions are restricted to a single STK gene ULK4

(supplementary material Table S1); (2) ULK4 encodes a previously

unknown kinase; and (3) all four patients are in Scotland. The four
patients (three from Aberdeen and one in Edinburgh) did not share
any other CNVs across the genome. The ULK4 gene is located at

chromosome 3p22.1 and the longest isoform with 1275 amino
acids is encoded by 36 exons. The deletions in the four
schizophrenic patients were intragenic, all spanning from intron

20 to 34 (Fig. 1A), which truncated the ULK4 coding sequence in
the 39-half of the gene. The Aberdeen schizophrenia cohort has
been independently genotyped by deCODE, which verified three

ULK4 CNVs in the same genomic regions by different platforms
(supplementary material Fig. S2).

In the deCODE dataset, we identified additional ULK4

deletions, which removed exons 33 and 34 of the large splice

variant (supplementary material Fig. S2). The deletions are
present in 37 of 98,022 Icelandic controls, but significantly
enriched in patients, with two in 708 Icelandic schizophrenia
cases (odds ratio: OR57.5, P50.01), two in 1136 bipolar patients

(OR54.7, P50.05) and one in 507 autism cases (OR57.5,
P50.2425). Combined ISC and Icelandic datasets give a P-value
less than 0.0001 for schizophrenia (OR58.8) or for schizophrenia

plus bipolar (OR57.2).
ULK4 is an unc-51-like STK with five family members,

ULK1–4 and STK36, in mammals. One additional genomic

duplication involving the 59-half of the ULK2 gene was present in
the patient group (Fig. 1C and supplementary material Table S1),
and partial duplications of 39-half of ULK1 gene were found in

two patients and one control of the ISC dataset (Fig. 1B and
supplementary material Tables S1 and S2). One-tailed Chi-
squared test with Yates’ correction for seven ULK CNVs in 3391
patients and one CNV in 3,181 controls gives a P-value of

0.047, suggesting that the ULK gene family is associated with
schizophrenia (Table 2).

The recurrent deletions of ULK4 in schizophrenia and bipolar

disorder patients highlight the potential importance of this kinase
in psychosis. We therefore reviewed the recently published data
by the Psychiatric GWAS Consortium (Psychiatric GWAS

Consortium Bipolar Disorder Working Group, 2011; Major
Depressive Disorder Working Group of the Psychiatric GWAS
Consortium et al., 2012), and found no association with

schizophrenia in this database. Association study of 3750
schizophrenia cases and 6468 controls of the Chinese Han
population suggested a potential association with SNPs
rs6599155 (P50.064) and rs17062109 (P50.057) in the ULK4

gene. In addition, SNP analysis of the bipolar GWAS in the
Psychiatric Genetics Consortium dataset showed a P-value of
0.0001 for rs17210774 in bipolar disorder, and a P-value of 0.001

for rs1722850 flanking the ULK4 gene in major depression
disorders. Collectively, these genetic data suggested strongly that
ULK4 is a rare, but high susceptibility risk factor for a range of

psychiatric diseases including schizophrenia.

Postnatal switch of Ulk4 isoform
Multiple ULK4 splice variants, with similar N-termini but

differing at the C-terminus, are predicted from mouse and
human genomic sequences. To establish the biology of ULK4
function, we first examined ULK4 expression and regulation with

an anti-ULK4 antibody. Western blotting revealed abundant
expression of the ,105 kDa (Fig. 2A, arrowhead) and ,95 kDa
(Fig. 2A, star) Ulk4 proteins in embryonic (E15.5 and E17.5) and

early postnatal (P0 and P3) mouse brains. However, adult mouse
brain expressed predominantly the large Ulk4 isoform of
,130 kDa (Fig. 2A, arrow), and it was the large isoform that

was affected by genomic deletions in schizophrenic patients.
These data suggest a postnatal switch of Ulk4 expression from the

Table 1. CNVs of STK genes are significantly enriched in schizophrenia patients recruited in a GWAS study by ISC

STK gene deletion STK gene duplication Total STK CNV

Control (n53181) 17 58 75 (2.36%)
Schizophrenia (n53391) 34 90 124 (3.66%)
One-tailed chi-squared with Yates’ correction, P x258.995

P50.0014

RESEARCH ARTICLE Journal of Cell Science (2014) 127, 630–640 doi:10.1242/jcs.137604

631



Jo
ur

na
l o

f C
el

l S
ci

en
ce

small isoforms to the large isoform, and the requirement of the

large isoform for postnatal brain function.
To investigate signalling pathways influencing ULK4

expression during neuronal differentiation, human neuroblastoma
SH-SY5Y cells were treated with DMSO, 9-cis RA, all-trans

retinoic acid (ATRA), dibutyryl cAMP (db cAMP), pituitary
adenylate cyclase-activating peptide (PACAP) or nerve growth
factor (NGF) for 2 days (Fig. 2C,D). The most abundant ULK4

species in SH-SY5Y cells was the ,95 kDa one, with weak
expression of other isoforms of ,105 or ,130 kDa (Fig. 2C).
With the existing reagents it was not possible to establish that all

bands were ULK4-specific isoforms, but the ,95 kDa protein

(star, Fig. 2C) was upregulated substantially by 9-cis RA and

ATRA. This induction was time dependent and a significant
increase was detected from 1 day onwards for ATRA (P,0.05),
but not earlier (Fig. 2E,H), suggesting that ULK4 could be a
secondary RA-responsive gene, and the ,95 kDa isoform could be

required during RA-mediated neuronal differentiation.

ULK4 is highly expressed in cortex and hippocampus
We next investigated in vivo neuroanatomical expression of Ulk4
by performing immunohistochemistry with antibody against
Ulk4. We showed ubiquitous expression of Ulk4 in mouse

brain, with high intensity in layers II/III and V of the cerebral

Fig. 1. Genetic association of ULK4 gene family members with schizophrenia in the ISC dataset. (A). Schematic representation of an 800 kb
chromosomal region, 3p22.1, which encodes ULK4 and flanking CTNNB1 genes. Four schizophrenia patients were identified to carry intragenic deletions
spanning exons 20–34 of the ULK4 gene. (B) Partial duplication of the ULK1 gene was found in two patients and one control. (C) Partial duplication of the ULK2

gene was found in one schizophrenia patient but not in controls.

Table 2. CNVs of ULK4 family members are significantly enriched (OR56.77) in schizophrenia patients recruited in a GWAS study
by ISC

ULK1 ULK2 ULK4 Total ULK CNV

Control (n53181) 1 0 0 1
Schizophrenia (n 53391) 2 1 4 7
One-tailed chi-squared with Yates’ correction 0.3007 0.1664 0.0753 0.0466
One-tailed Fisher’s exact test, P 0.5240 0.5160 0.0708 0.0426
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cortex (Fig. 3A), piriform cortex (Fig. 3B), CA1-3 of hippocampus
(Fig. 3D,G), dentate gyrus (Fig. 3H), ependymal cells lining the

ventricles and choroid plexus (Fig. 3I), and in the thalamic reticular
nucleus (Fig. 4G,H). There was no colocalization of Ulk4 with

GFAP or 29,39-cyclic nucleotide 39-phosphodiesterase (CNPase),
specific markers for astrocytes (Fig. 4C) and oligodendrocytes

(Fig. 4D), respectively. Double-labelling with anti-Ulk4 and
anti-Sox10, a transcription factor specifically expressed in
oligodendrocytes, further confirmed that Ulk4 was not present

in Sox10-positive cells in the corpus callosum (Fig. 4M) or
cortex (Fig. 4N). However, Ulk4 was co-expressed with NeuN
(Fig. 4A,B) and GAD67 (Fig. 4E–H). Similar expression patterns
were detected in post-mortem human brain sections (Fig. 4I–L).

ULK4 expression was detected in human MAP2-positive (Fig. 4K)
and GAD67-positive neurons (Fig. 4L), but not on GFAP-positive
astrocytes of human cortex (data not shown) and hippocampus

(Fig. 4I,J). The anti-ULK4 staining was specific, and expression of
Ulk4 was almost undetected in Ki67-positive (red, supplementary
material Fig. S3A) and BrdU-positive adult neural stem cells in the

subventricular zone, or adjacent to the ependymal cells (green,
supplementary material Fig. S3B). These data demonstrate that in
adult brain anti-ULK4 immunoreactivity is mainly located in

postmitotic neurons, including GABAergic neurons, which are
commonly defective in schizophrenia.

ULK4 knockdown compromises neuritogenesis and impairs neurite
branching
Depletion of ULK4 in SH-SY5Y cells by shRNA-mediated gene
knockdown resulted in a significant reduction in ULK4 expression

compared with control cells (P50.005, n53; Fig. 5H, top lane;
Fig. 7; and supplementary material Fig. S5) Comparison of ULK4
knockdown and control cells revealed a substantial difference in

neuritogenesis (Fig. 5A,G). On the first day of subculture, the control
cells had much longer neurites (23.461.0 mm, n5115) than the ULK4

knockdown cells (14.660.6 mm, n5118, P,0.01; Fig. 5A,D,G). On

day 5 (Fig. 5C,F), the neurites of control cells had more than doubled

Fig. 2. Expression of ULK4 protein during brain development and neuronal differentiation. (A,B) Proteins were extracted from E15.5, E17.5, P0, P3
whole brain, and cortex (CX), hippocampus (HP), olfactory bulb (OB) and cerebellum (CB) of adult mouse brain, and immunoblotted with anti-ULK4 (A) or anti-a-
tubulin (B), showing a switch of Ulk4 isoform expression from ,105 (arrowhead) and ,95 kDa (star) in embryos and early postnatal brain to ,130 (arrow) in
adult brain. (C–F) Regulated expression of ULK4 during neuronal differentiation. SH-SY5Y cells (C,D) were treated with DMSO, 9-cis RA, all-trans retinoic
acid (ATRA), dibutyryl cAMP (db cAMP), pituitary adenylate cyclase-activating peptide (PACAP) or nerve growth factor (NGF) for 2 days, and blotted with
anti-ULK4 (C) or anti-a-tubulin (D). Note a substantial induction of ULK4 expression by 9-cis RA and ATRA RA in SH-SY5Y cells. (E,F) SH-SY5Yprotein extracts
from cells without (C, control) or with 9-cis RA or ATRA for 2 hours, 8 hours, 1 day, 2 days or 5 days, and blotted with anti-ULK4 (E) or anti-a-tubulin (F),
showing time-dependent ULK4 upregulation by 9-cis RA and ATRA. (G) Relative expression of various Ulk4-reactive species in mouse brain. (H) Quantification
of ULK4 relative to housekeeping protein. Values are means 6 s.e.m.; *P,0.05.

Fig. 3. Expression of Ulk4 in the mouse brain. (A–I) Brightfield staining of
mouse brain sections with anti-Ulk4 antibody showing Ulk4 expression
(in brown) in the cerebral cortex (A), piriform cortex (B), hippocampus (D–H),
choroid plexus and ventricular ependymal cells (I), with a negative control in
the absence of the primary antibody (C). I–VI, sublayers of cerebral cortex;
CA1–3, subfields of the hippocampus; cc, corpus callosum; cp, choroid
plexus; dg, dentate gyrus; ep, ependymal layer; LV, lateral ventricle; pir,
piriform cortex. Scale bars: 50 mm.
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Fig. 4. Double immunofluorescent staining showing neuronal-specific ULK4 expression in mouse (A-H,M,N) and human (I–L) brain. Double
immunofluorescent staining was carried out with antibodies against ULK4 and, NeuN (A,B), GFAP (C,I,J), CNPase (D), GAD67 (E–H,L) and MAP2 (K). Ulk4 was
co-expressed with NeuN in mouse cortex (A) and mouse hippocampus (B), and also with MAP2 in human cortical neurons (K). No expression of Ulk4 was
detected in GFAP-positive astrocytes in mouse hippocampus (C), human hippocampus (I,J) or CNPase-expressing mouse oligodendrocytes (D). However,
ULK4 was colocalised with GAD67, a specific marker for GABAergic interneurons, in mouse cortex (E), mouse hippocampus (F), mouse reticular thalamic
nucleus (G,H) and human brain (L). H is a higher magnification of boxed area in G, showing the double labelling of Ulk4 and GAD67 in mouse reticular thalamic
nucleus. (M,N) Double immunostaining of corpus callosum (M) and layer V of the cortex (N) with anti-ULK4 (green), and anti-Sox10 (red), a specific marker for
oligodendrocytes, showing no Ulk4 expression in oligodendrocytes. Arrows in E, F, H, K and L indicate typical double-labelled neurons. cc, corpus callosum; DG,
dentate gyrus; ic, internal capsule; RTN, reticular thalamic nucleus; VPL, ventral posterolateral thalamic nucleus. Scale bars: 50 mm (A–L); 20 mm (M,N).

Fig. 5. ULK4 knockdown compromises neurite elongation and branching. (A–F) Images of puromycin-resistant control (Con, A–C) or ULK4 knockdown
(KD; D–F) cells after subculture. (G) Quantification of neurite length in control (Con) and ULK4 KD cells. Values are means 6 s.e.m.; P,0.01; for control
cells n5115 (day 1); 170 (day 2); 171 (day 3); 152 (day 4); 153 (day 5); for ULK4 KD n5118 (day 1); 130 (day 2); 153 (day 3); 124 (day 4); 125 (day 5).
(H,I) Protein extracts from control (Con) and ULK4 KD cells were immunoblotted with the indicated antibodies. ULK4 KD cells showed reduced expression of
acetylated a-tubulin and un-altered expression of tyrosinated tubulin and b-tubulin III. **P,0.01, n53. N.S., not significant. Scale bars: 50 mm (A–F).
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in length (54.761.4 mm, n5153), whereas the knockdown cells
showed reduced neurite extension (22.460.8 mm, n5125, P,0.01;

Fig. 5G). F-actin staining strikingly revealed that the knockdown cells
only had short, stout and rigid-looking neurite protrusions with
considerably fewer secondary or higher order neurite branches
(Fig. 6A,B,E,F), suggesting that ULK4 plays a crucial role in

neuritogenesis.
The deficit in neurite formation may result from abnormal

assembly of the cytoskeleton. Microtubules consist of a- and b-

tubulin subunits, and acetylation of a-tubulin helps to stabilize them.
We detected significantly less acetylated a-tubulin (P50.009, n53)
in the knockdown cells (Fig. 5H,I; Fig. 6I,J; supplementary material

Fig. S4A,B), whereas b-tubulin III expression was not altered
(P50.09, n53; Fig. 5H,I; Fig. 6C,G; supplementary material Fig.
S4C,D). Tubulin tyrosinylation is also involved in the assembly of

microtubules and contributes to active neurite formation. Although
there was no significant change in the quantity of tyrosinated tubulin
(P50.06, n53; Fig. 5H,I), more diffuse distribution of tyrosinated
tubulin was observed in the ULK4 knockdown cells (Fig. 6D,H and

supplementary material Fig. S4E,F). These data indicate that ULK4
is involved in remodelling of cytoskeletal components and in this
way regulates neurite branching and elongation.

ULK4 knockdown reduces cell motility
Abnormal neuronal migration and faulty cell positioning could lead to

disorganized brain development and hence a range of brain
malfunctions including schizophrenia and autism. To examine the
role of ULK4 in cell motility, we imaged the random motility of the

ULK4 knockdown cells and control SH-SY5Y cells and analysed their
migration competence (Fig. 6K) (Lang et al., 2006). We found that
control cells were constantly changing direction and moving with a
mean rate of 48.161.8 mm/hour (Tt/T; see Materials and Methods)

and 25.761.4 mm/hour (Td/T; n5114 cells). However, the migration
rate in ULK4 knockdown cells was reduced significantly by 31% and
34%, respectively (Tt/T, 33.461.1 mm/h, Td/T, 16.460.9 mm/h;

n5140 cells, P,0.001, see supplementary material Movie 1).
Therefore, ULK4 silencing significantly reduces cell motility in vitro.

ULK4 modulates ERK, p38 MAPK, PKC and JNK pathways
Nothing is known about ULK4 upstream signalling pathways or

downstream substrates. This prompted us to examine major
signalling pathways implicated in schizophrenia and neuronal
function. Growth factors and cellular stress activate the MAPK
family of signalling intermediates, known to play important

roles in neuronal development. In ULK4 knockdown cells, we
observed a significant reduction in the phosphorylation of
ERK1/2 (P50.001, n53) and p38 MAPKs (P50.003, n53).

Upregulated activity of the stress-activated c-Jun N-terminal
kinases (JNKs) is highly involved in neuritogenesis, including
axon formation, polarization, extension, synaptic plasticity, and

dendrite development during brain development or under a stress
challenge (Coffey et al., 2000; Rosso et al., 2005; Oliva et al.,
2006; Barnat et al., 2010; Qu, et al., 2013; Sun et al., 2013). In

line with these reports, we observed consistently decreased
expression of phosphorylated JNK in ULK4 knockdown cells
(P50.008, n53; Fig. 7). ELK1 is a major substrate of ERK/p38,
and phosphorylated ELK1 is required for target gene activation.

Consistently, we detected decreased phosphorylation of ELK1 in
knockdown cells (P,0.001, n53; Fig. 7). G-protein-coupled
receptors often activate PKA and PKC. PKC mediates stress-

related dendritic remodelling of cortical neurons and is implicated
in bipolar and schizophrenic conditions. Strikingly, we found
significantly increased phosphorylation of PKC in knockdown

cells (P50.02, n53). ULK4 knockdown, however, did not affect
PKA, with no alteration of phosphorylated CREB (P50.26, n53;
Fig. 7). These results indicate that multiple signalling pathways

were affected by ULK4 knockdown.

Defects of corpus callosum in Ulk42/2 mice
Although the non-specific shRNA had been widely used as

control for knockdown experiments, it has its limitations. To
examine the functional consequences of Ulk4 deficiency in vivo,
we compared the neuroanatomy of the newborn littermates from

Ulk4+/26Ulk4+/2 mating. The brain sections were stained
immunohistochemically with the neuronal marker Tuj1 (Fig. 8).

Fig. 6. ULK4 knockdown impairs neuritogenesis and neuronal motility. (A–J) Puromycin-resistant control (Con) and ULK4 KD cells were cultured for
2 days and stained for F-actin (A,B,E,F), b-tubulin III (Tuj, C,G), tyrosinated a-tubulin (D,H) and acetylated a-tubulin (I,J). B and F are magnified views of the
boxed regions in A and E, respectively, showing defective neurite branching in KD cells (F). Arrowheads in A and arrows in E indicate the neurites of
control and knockdown cells respectively. (K) Reduced migratory rates of ULK4 KD cells compared with puromycin-resistant control, indicating that ULK4
modulates random cell motility. Scale bars: 50 mm (A,C–E,G–J); 10 mm (B,F). **P,0.01.
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Ulk42/2 mice were found to have partial agenesis of the corpus
callosum. The corpus callosum consists of nerve fibres projecting

from cortical neurons to communicate between the two
hemispheres. At post-natal day 0, high magnification views of
the brain sections revealed a dense layer of nerve fibres crossing

the midline in the wild-type newborn mice (Fig. 8A,C,E),
whereas in the Ulk42/2 brain, the corpus callosum had many
areas lacking nerve fibres (Fig. 8B,D,F). Consistent with

neuritogenesis defects in knockdown neuroblastoma cells, the
apparent agenesis of corpus callosum in Ulk42/2 mice might
result, in part, from short cortical projections and reduced

branching during mouse brain development.

DISCUSSION
We have identified by recurrent CNVs that the ULK4 gene is

associated significantly with schizophrenia and other major
psychiatric disorders in two large independent cohorts (ISC and
deCODE). Although concerns may be raised that different

datasets analysed platforms of different resolution, we find this
does not appear to affect the ULK4 gene in this study. For
example, three of the four ULK4 large deletion samples have

been independently genotyped by ISC (Fig. 1A) and deCODE
(supplementary material Fig. S2), and both datasets mapped the
deletions to reproducible regions in these patients. In addition, in

the Icelandic control population, deletions in both 39 and 59

regions of the ULK4 gene as well as in the neighbouring TRAK1

gene were detected (supplementary material Fig. S2). Therefore,
different regions of the ULK4 gene are well covered by the

deCODE platforms.
In both datasets the disruptions were localized to the 39-half of

the ULK4 gene (albeit different regions) and affected the large

ULK4 transcript, which is predicted to encode a STK domain at
its N-terminus, with two ARM-like protein–protein interaction
domains in the middle and at the C-terminus. We were unable to

examine the transcripts in any of the CNV cases. Given that all
the deletion boundaries are intronic, it is more likely that haplo-
insufficiency through nonsense-mediated decay is contributing to
increased risk of major mental illness, although a dominant-

negative or gain-of-function mechanism cannot be ruled out
completely. As there is no evidence of a single origin of founder

mutation in either population, this highlights again presumed
heterogeneity across populations in vulnerability to specific

individual mutational events. The data on SNP allelic associations
are less compelling and need to be treated with caution. Although
no significant association signals were observed with

schizophrenia in Caucasian populations, and only marginal
associations with schizophrenia with two SNPs (rs6599155,
P50.064 and rs17062109, P50.057) in a large Chinese case

control cohort, SNP rs17210774 of ULK4 was highly associated
with bipolar disorder in Caucasians, and another SNP
(rs1722850), close to but downstream of ULK4, was associated

with major depressive disorders. These results strongly suggest
that ULK4 can be a rare genetic risk factor of a range of
psychiatric disorders.

On this basis, we decided to characterize some of the

functional neurobiology of ULK4. We have shown, for the
first time, that an appropriate level of ULK4 expression is
fundamental to neuritogenesis, neurite branching, neuronal

motility and consequently brain development. The genesis of
the corpus callosum was compromised in the Ulk42/2 newborn
mice. Furthermore, we demonstrated that ULK4 is modulated by

several signalling molecules including RA, and in turn, regulates
multiple signalling pathways involved in the control of the
neuronal cytoskeleton frequently implicated in schizophrenia

neuropathology.
Although five members of unc-51 like kinases (ULK1–4 and

STK36) have been documented in mammals, little information is
available about ULK4. Recent GWAS studies suggest it is a risk

locus for multiple myeloma (Broderick et al., 2011) and inter-
individual diastolic blood pressure variation (Levy et al., 2009).
Null mice with targeted deletion of Ulk4 were recently reported to

develop congenital hydrocephalus, and their respiratory epithelia
and ependymal cells had shorter cilia than normal, indicating
ciliopathies (Vogel et al., 2012). Intriguingly, many imaging

studies have suggested that schizophrenia patients have increased
global or regional cerebrospinal fluid (Ananth et al., 2002; Bose
et al., 2009; Hulshoff Pol et al., 2002). We have shown strong
expression of Ulk4 in the choroid plexus and ependymal cells,

which hints at the possible modulation by Ulk4 of the production
and directed flow of cerebrospinal fluid. Remarkably, Stk36,

Fig. 7. ULK4 modulates multiple signalling pathways. (A) Equal amounts of protein from control (Con) and ULK4 KD cells were blotted with the antibodies
specified. ULK4 KD cells showed effective knockdown, increased expression of phosphorylated (p-) PKC and reduced levels of p-ERK1/2, p-p38, p-ELK1 and p-
JNK. The expression of p-CREB was not altered. (B) Protein expression in KD cells was normalised to controls. Data are averages of three independent
experiments 6 s.d. *P,0.05, **P,0.01, n53. N.S., not significant.
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another Ulk family member, is also associated with
hydrocephalus (Merchant et al., 2005). This evidence indicates
that ULK4 plays important but largely neglected roles in brain

development and tissue homeostasis.
Defective neuritogenesis is the most consistent neuroanatomical

finding in post-mortem studies of schizophrenia (Black et al., 2004;
Guidotti et al., 2000; Glantz and Lewis, 2000) and in functional

studies using animal models (Shen et al., 2008; Ozeki et al., 2003;
Bellon, 2007). Recently, two studies using induced pluripotent
stem cell techniques showed that neurons derived from fibroblasts

of human schizophrenia patients had reduced neurite numbers
and neuronal connectivity (Brennand et al., 2011; Chiang et al.,
2011). In our study, knockdown of ULK4 greatly decreased

neuritogenesis. Intriguingly, ULK4 knockdown cells have less
acetylated a-tubulin. This is important because a-tubulin is
acetylated in the polymeric form and deacetylation is closely
coupled to microtubular depolymerisation. Acetylation of

assembled a-tubulin increases the stability of microtubules,
which in turn contributes to active growth cone initiation and
neurite elongation (Black et al., 1989). Reduced acetylation

decreases dendrite length and/or branching and impairs radial
migration of cortical neurons, whereas pharmacological restoration
of a-tubulin acetylation rescues these deficits (Creppe et al., 2009).

We suspect that areas of disassembled a-tubulin might underlie the
defective neurite elaboration in the ULK4 knockdown cells.

PKC has long been regarded as underpinning neuritogenesis
and neuronal connectivity. Overactivity of PKC leads to marked

retraction of dendrites and loss of spine density in the prefrontal
cortex and hippocampus and further disrupts working memory,
spatial learning and memory performance (Hains et al., 2009;
Wood et al., 2004; Birnbaum et al., 2004). In addition, genetic

alteration leading to overactivated PKC signalling has been
reported in bipolar disorder (Baum et al., 2008) and schizophrenia
(Mirnics et al., 2001). Lithium treatment reduces PKC activation

in bipolar manic patients (Hahn et al., 2005), restores stress-
induced dendritic retraction in rats (Wood et al., 2004), and
increases brain grey matter in human patients (Moore et al.,

2000). The CNVs of the PKC genes appeared to be enriched in
the ISC schizophrenia cohort, with one PRKCG duplication and
two PRKCZ duplications in patients, and only one PRKCG

duplication in controls. We show that ULK4 knockdown leads to
a significant increase of PKC activity, which suggests that
appropriate levels of ULK4 are required to maintain normal PKC
activity.

Extracellular signal-regulated kinase (ERK1/2) also facilitates
neurite outgrowth (Miñano et al., 2008; Desbarats et al., 2003).
Recently, a compartmentalized ERK activation–deactivation

switch was reported to govern neurite growth and retraction
(Wang et al., 2011). Alteration of the MAPK pathway has also
been implicated in schizophrenia (Walsh et al., 2008). In addition,

phencyclidine abuse decreases ERK activity and reduces synaptic
connectivity (Adachi et al., 2012), indicating important roles of
ERK1/2 in the regulation of cytoskeletal dynamics and synaptic

plasticity. In agreement with these reports, we show that ULK4
regulates the MAPK pathway and that ULK4 silencing reduces
activation of ERK1/2 and p38, and produces defective
neuritogenesis.

Mammalian JNKs consist of JNK1–3 with more than 10 splice
variants encoded by MAPK8–10 genes. They are strongly
expressed in the brain and mostly studied in the context of

cellular stress and apoptosis. Recently, compelling evidence
indicates that they also govern the process of neurite outgrowth,
branching and elongation. Depletion or pharmacological

inhibition of JNKs substantially delayed neuritogenesis, neurite
elongation (Coffey et al., 2000; Barnat, et al., 2010) and axonal
guidance (Qu et al., 2013). Jnk12/2 mice exhibit disrupted
anterior commissure tract formation and abnormal axonal

microtubule integrity (Chang et al., 2003), as well as altered
dendritic architecture (Björkblom et al., 2005). In addition, JNK-
interacting protein 3 also promotes axon elongation in a JNK-

dependent manner through facilitating actin polymerization (Sun
et al., 2013). In the present study, the CNV frequency of MAPK8–
10 was comparable in the ISC cases and controls, with one

MAPK8 duplication plus one MAPK9 partial duplication in the
ISC cases, and one MAPK9 plus one MAPK10 partial duplication
in the controls. However, ULK4 depletion significantly

downregulated the expression of phosphorylated JNK. This
suggests that ULK4 may help to maintain cytoskeletal integrity
and microtubule assembly through regulation of the JNK
pathway. We propose that a decrease in JNK activation impairs

the formation of dendrite- and axon-like structures in the
knockdown cells. In addition, consistent with observations of
white matter reduction (including corpus callosum agenesis) and

decreased dendritic arborisation in schizophrenia patients (Bose
et al., 2009; Douaud et al., 2007; Fornito et al., 2009; Francis
et al., 2011), we found evidence that the genesis of corpus

callosum was compromised in the Ulk42/2 newborn mice.

Fig. 8. Ulk42/2 mice exhibited defects in integrity of the corpus
callosum . (A–F) b-tubulin III (Tuj1) immunostaining of P0 wild-type (WT;
A,C,E) and Ulk42/2 (B,D,F) mouse brains. C and D are magnified (406)
views of the region of the corpus callosum (cc) indicated by the black boxes
in A and B, showing dense and directional nerve fibres in the cc of WT mice
(C), but in Ulk42/2 mice the structure is abnormal, with loose, fractured and
collapsed fibres (D). E and F show even higher magnification (606) of the cc
with extensive and clear space between fibres in the Ulk42/2 mice. Scale
bars: 50 mm.
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Together our data show that ULK4 plays important roles in
regulating stress-related pathways including those involving

PKC, ERK, p38 MAPK and JNK.
Although this study has primarily focused on the ULK4 gene, the

systematic analysis of the CNVs in the ISC data in this study has
identified 34 genomic deletions (1%) and 91 (2.7%) duplications in

3391 schizophrenic cases that harbour STK genes. The STK CNV
is 1.6-fold enriched in patients compared with 17 (0.5%) deletions
and 58 (1.8%) duplications in 3,181 controls. Although these

disease-specific CNVs are rare and not sufficient to conclude inter-
relationships of the kinase pathways, we suggest that some of them
may be worth following up, including the MAP kinase cascade

(MINK1, MAPK8, MKNK1), PKC signalling (PRKCZ, PRKCG,
PKN2), stress (MAPKAPK3, STK39, EIF2AK1, SMG1) and
hormonal (ADRBK1, ADRBK2, HUNK) response, cytoskeleton

remodelling (PAK7/LIMK1/RIOK3), cell proliferation and
apoptosis (MAPK6, PKMYT1, TAOK2, CDK14, PAK2, SIK1,
RPS6KB2, NRBP2), and neuronal differentiation, maturation
and neurotransmission (STK38L, LRRK1, MYLK4 and ULK4).

GABAergic neurons are commonly defective in schizophrenia.
ULK4 is expressed in GABAergic neurons, and it is now
appropriate to investigate whether Ulk4 deficiency affects birth

and/or function of GABAergic neurons.
In summary, we have identified recurrent rare deletions of the

ULK4 gene in patients with schizophrenia and other psychiatric

disorders. Our data show that ULK4 may be involved in
fundamental neurobiological and molecular processes implicated
in the pathogenesis of multiple neurodevelopmental disorders and

that ULK4 deficiency leads to defects in neuritogenesis in vitro and
in vivo.

MATERIALS AND METHODS
Ethics statement
The study was approved by the Multi-Centre Research Ethics Committee

for Scotland and patients gave written informed consent for the collection

of DNA samples for use in genetic studies. All the mouse work and

molecular studies have been approved by the ethical committees of the

Universities of Aberdeen and of Edinburgh.

CNV analyses
CNV data in the ISC dataset of 3391 schizophrenia patients and 3181

ancestrally matched controls were analysed for 255 serine/threonine

genes. Recruitment and assessment of cases and controls and the methods

of CNV analysis have been described before (International Schizophrenia

Consortium, 2008). Four CNV deletions in ULK4 were present in

Scottish patients. Diagnoses of schizophrenia according to DSM4 criteria

were reached by consensus between two trained psychiatrists. P-values

were calculated by one tailed chi-squared tests with Yates’ correction.

deCODE has genotyped 100,373 Icelandic subjects using microarrays

from Illumina (Human317K and larger). This includes 708 schizophrenia

patients (2 deletion carriers), 1,136 bipolar patients (2 deletion carriers),

507 autistic individuals (1 deletion carrier) and 98,022 controls (37

deletion carriers), which were described previously (Stefansson et al.,

2008; Steinberg et al., 2014; Vassos et al., 2012; Rujescu et al., 2009;

Weiss et al., 2008). CNV analysis of the ULK4 region was performed by

interrogation of chip data spanning exons of ULK4. P-values were

calculated by one tailed chi-squared tests with Yates’ correction.

SNPs, typed using Affymetrix 500 or 2M chip, mapping between the

above coordinates were examined for allelic association to schizophrenia

and bipolar disorder (Psychiatric GWAS Consortium Bipolar Disorder

Working Group, 2011) and major depression disorder (Major Depressive

Disorder Working Group of the Psychiatric GWAS Consortium, 2012) in

the Psychiatric GWAS Consortium dataset and a large case control

schizophrenia cohort of Han Chinese from Shanghai Jiaotong University

(Shi et al., 2011).

Immunohistochemistry and immunoblotting
Immunohistochemistry was carried out on human brain sections without

clinical signs of neuropsychiatric disease (a gift from Prof. T. Harkany,

University of Aberdeen) and mouse snap-frozen coronal brain sections.

For immunoblotting, proteins were extracted with RIPA buffer

containing complete protease and phosphatase inhibitors (Roche).

Equal amounts of protein were fractionated by SDS-PAGE and

transferred to nitrocellulose membranes. The membranes were blocked

and incubated with primary antibodies overnight at 4 C̊, incubated with

HRP-conjugated secondary antibody (Invitrogen) and developed using an

enhanced chemiluminescence kit (Millipore).

The following primary antibodies were used in these experiments:

rabbit anti-ULK4 (NBP1-20229, Novus Biologicals), mouse anti-BrdU

(BD biosciences), rat anti-Ki67 (DAKO), mouse anti-GFAP and mouse

anti-CNPase (Abcam), mouse anti-a-acetylated tubulin, rabbit anti-b-

tubulin III, mouse anti-tyrosine tubulin, mouse anti-b-actin and mouse

anti-MAP2 (Sigma-Aldrich). Mouse anti-NeuN, mouse anti-GAD67,

rabbit anti-phospho-CREB (ser133) (Millipore). Mouse anti-GAPDH,

ELK1 and phospho-ELK1 (Santa Cruz, USA); mouse anti-phospho-

ERK1/2, rabbit anti-ERK1/2, rabbit anti-phospho-p38, rabbit anti-p38,

rabbit anti-CREB, rabbit anti-phospho-PKC, rabbit anti-phospho-JNK

and rabbit anti-JNK (Cell Signaling Technology). Anti-Sox10 was kindly

provided by Prof. Michael Wegner, University Medical Center Hamburg-

Eppendorf, Hamburg, Germany.

Horseradish-peroxidase-conjugated-secondary antibodies for western

blotting were purchased from Sigma. Fluorescent secondary antibodies

for immunofluorescence staining were Alexa Fluor 488 or 594

conjugated (Molecular Probes). Secondary antibodies and the

developing kits for DAB staining were from Sigma and Vector. F-actin

was labelled with Alexa-Fluor-488–phalloidin (Molecular Probes)

according to the manufacturer’s instructions.

Cell culture
SH-SY5Y cells were maintained in DMEM:F12 with 10% foetal bovine

serum. To examine regulation of ULK4 expression, cells were grown in

reduced serum medium (0.2% FBS) for 24 hours and then treated with

DMSO, or 25 mM ATRA, 25 mM 9-cis RA, 1 mM db cAMP, 100 nM

PACAP or 100 ng/ml NGF, respectively.

ULK4 knockdown
ULK4 silencing was achieved by expression of a lentiviral shRNA

against exon 1 of ULK4 (Sigma, TRCN0000002205; 59-CCGGCGACG-

GAAGGGAACAATCAATCTCGAGATTGATTGTTCCCTTCCGTCG-

TTTTT-39). A vector containing a non-specific sequence (Sigma,

SHC002; 59CCGGCAACAAGATGAAGAGCACCAACTCGAGTTGG-

TGCTCTTCATCTTGTTGTTTTT-39) for any human gene was chosen

as control. Detailed procedures have been described previously (Martin-

Granados et al., 2008). Three batches of puromycin-resistant stable cell

lines were generated by two researchers with three independent batches

of virus expressing ULK4 or control shRNAs. The knockdown efficiency

was analysed statistically on three independent batches of cell lines and

shown as averages of three independent experiments 6 standard

deviation (s.d.; P,0.05 and P,0.01were considered significant).

Neurite outgrowth assay
ULK4 knockdown and control cells were plated in 24-well dishes.

Medium was regularly replenished and random images were taken daily

for 5 days using an Axiovert 40CFL microscope (Leica) with a 206
objective lens. The length of neurites was measured and analysed

statistically as previously (Shen et al., 2008). P,0.05 was considered

significant.

Cell migration
ULK4 knockdown and control cells were seeded at a low density (56104)

onto six-well plates 16–20 hours before migration assay. Cells were

cultured in CO2-independent medium (Invitrogen) in a temperature-

controlled chamber. Images were recorded every 15 minutes for 2 hours

(5 hours for supplementary material Movie 1) and analysed using

RESEARCH ARTICLE Journal of Cell Science (2014) 127, 630–640 doi:10.1242/jcs.137604

638



Jo
ur

na
l o

f C
el

l S
ci

en
ce

MetaMorph software (Universal Imaging Corp). Migration rate was

presented with trajectory speed (Tt/T) – the total length of the migration

trajectory of a cell (Tt) divided by the given period of time (T), and

displacement speed (Td/T) – the straight-line distance between the start

and end positions of a cell (Td) divided by the time (T). All experiments

were independently performed in triplicate.

Ulk4 knockout mice
Ulk4+/2 mice on a C57BL/6N strain background were purchased from

KOMP Repository (knockout mouse project, USA). All experimental

procedures were conducted under a licence approved by the Irish

Department of Health and Children in accordance with Cruelty to

Animals Act of 1876 and under a certificate approved by the Animal

Care and Research Ethics Committee (ACREC) of the National

University of Ireland Galway, Galway, Ireland. Ulk42/2, Ulk4+/2 and

wild-type littermates were obtained from Ulk4+/26Ulk4+/2 matings.

Mice were genotyped by PCR of genomic DNA with two pairs of PCR

primers: Ulk4EndE7For (59-TAACTTGCTGGACGGATTGCTG-39)

and with Ulk4EndIn7Rev (59-TGATCTGTAATCGCAGTGCAGG-39)

amplifying a 271 bp DNA fragment from the wild-type allele,

and Ulk4KOMPKOFor (59-GAGATGGCGCAACGCAATTAATG-39)

and Ulk4KOMPKORev (59-CTGAGGAGACAATGTAACCAGC-39) to

produce a 621 bp DNA fragment from the knockout allele. Newborn

mice were humanely killed with an over-dose of sodium pentobarbitone

and P0 brains were immersed overnight in PBS containing 4%

paraformaldehyde at 4 C̊. They were then embedded in paraffin and

sectioned at 10 mm. Brain sections were immunohistochemically

processed with the primary mouse anti-bIII tubulin (Tuj1; 1:1000,

Promega) and biotinylated goat anti-mouse secondary (KPL) antibodies.

Then they were developed with the Vectastain Elite ABC system

(Vector). Images were captured using an Olympus BX51 upright,

fluorescence microscope.
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