143 research outputs found

    Identification of key genes and pathways in human clear cell renal cell carcinoma (ccRCC) by co-expression analysis

    Get PDF
    Human clear cell renal cell carcinoma (ccRCC) is the most common solid lesion within kidney, and its prognostic is influenced by the progression covering a complex network of gene interactions. In our study, we screened differential expressed genes, and constructed protein-protein interaction (PPI) network and a weighted gene co-expression network to identify key genes and pathways associated with the progression of ccRCC (n = 56). Functional and pathway enrichment analysis demonstrated that upregulated differentially expressed genes (DEGs) were significantly enriched in response to wounding, positive regulation of immune system process, leukocyte activation, immune response and cell activation. Downregulated DEGs were significantly enriched in oxidation reduction, monovalent inorganic cation transport, ion transport, excretion and anion transport. In the PPI network, top 10 hub genes were identified (TOP2A, MYC, ALB, CDK1, VEGFA, MMP9, PTPRC, CASR, EGFR and PTGS2). In co-expression network, 6 ccRCC-related modules were identified. They were associated with immune response, metabolic process, cell cycle regulation, angiogenesis and ion transport. In conclusion, our study illustrated the hub genes and pathways involved in the progress of ccRCC, and further molecular biological experiments are needed to confirm the function of the candidate biomarkers in human ccRCC

    Enhancing the Efficiency of Polymer Solar Cells by Modifying Buffer Layer with N,N-Dimethylacetamide

    Get PDF
    We modified the PEDOT:PSS anode buffer layer in P3HT:PCBM bulk heterojunction polymer solar cells by spin-coating the solvent N,N-dimethylacetamide (DMAC). This modification significantly enhanced the efficiency of the ITO/PEDOT:PSS/DMAC/P3HT:PCBM/LiF/Al solar cells. The DMAC-treated device spin-coated at 3000 rpm exhibited a power conversion efficiency (PCE) of 3.74%, a 59% improvement over that of an untreated cell. To study the mechanism of improving the conversion efficiency, we characterized many parameters, including the light and dark I-V curves, external quantum efficiency, active layer absorption spectrum, transmission spectrum of ITO:PEDOTPSS, PEDOT:PSS surface morphology, and electrical conductivity. Modifying the PEDOT:PSS film increased conductivity, making it more conducive to hole extraction and collection. Our findings suggest that modifying the anode buffer layer can improve photoelectric conversion efficiency

    Anisotropic in-plane heat transport of Kitaev magnet Na2_2Co2_2TeO6_6

    Full text link
    We report a study on low-temperature heat transport of Kitaev magnet Na2_2Co2_2TeO6_6, with the heat current and magnetic fields along the honeycomb spin layer (the abab plane). The zero-field thermal conductivity of κxxa\kappa^a_{xx} and κxxa\kappa^{a*}_{xx} display similar temperature dependence and small difference in their magnitudes; whereas, their magnetic field (parallel to the heat current) dependence are quite different and are related to the field-induced magnetic transitions. The κxxa(B)\kappa^a_{xx}(B) data for BaB \parallel a at very low temperatures have an anomaly at 10.25--10.5 T, which reveals an unexplored magnetic transition. The planar thermal Hall conductivity κxya\kappa^a_{xy} and κxya\kappa^{a*}_{xy} show very weak signals at low fields and rather large values with sign change at high fields. This may point to a possible magnetic structure transition or the change of the magnon band topology that induces a radical change of magnon Berry curvature distribution before entering the spin polarized state. These results put clear constraints on the high-field phase and the theoretical models for Na2_2Co2_2TeO6_6.Comment: 7 pages, 4 figure

    Glassy Li Metal Anode for High-Performance Rechargeable Li Batteries

    Full text link
    Controlling nanostructure from molecular, crystal lattice to the electrode level remains as arts in practice, where nucleation and growth of the crystals still require more fundamental understanding and precise control to shape the microstructure of metal deposits and their properties. This is vital to achieve dendrite-free Li metal anodes with high electrochemical reversibility for practical high-energy rechargeable Li batteries. Here, cryogenic-transmission electron microscopy was used to capture the dynamic growth and atomic structure of Li metal deposits at the early nucleation stage, in which a phase transition from amorphous, disordered states to a crystalline, ordered one was revealed as a function of current density and deposition time. The real-time atomic interaction over wide spatial and temporal scales was depicted by the reactive-molecular dynamics simulations. The results show that the condensation accompanied with the amorphous-to-crystalline phase transition requires sufficient exergy, mobility and time to carry out, contrary to what the classical nucleation theory predicts. These variabilities give rise to different kinetic pathways and temporal evolutions, resulting in various degrees of order and disorder nanostructure in nano-sized domains that dominate in the morphological evolution and reversibility of Li metal electrode. Compared to crystalline Li, amorphous/glassy Li outperforms in cycle life in high-energy rechargeable batteries and is the desired structure to achieve high kinetic stability for long cycle life.Comment: 29 pages, 8 figure

    Sex Differences in Primary and Secondary Prevention of Cardiovascular Disease in China

    Get PDF
    Background: Despite improvements in diagnostic and therapeutic interventions to combat cardiovascular disease (CVD) in recent decades, there are significant ongoing access gaps and sex disparities in prevention that have not been adequately quantified in China. Methods: A representative, cross-sectional, community-based survey of adults (aged ≥45 years) was conducted in 7 geographic regions of China between 2014 and 2016. Logistic regression models were used to determine sex differences in primary and secondary CVD prevention, and any interaction by age, education level, and area of residence. Data are presented as adjusted odds ratios (ORs) and 95% CIs. Results: Of 47 841 participants (61.3% women), 5454 (57.2% women) had established CVD and 9532 (70.5% women) had a high estimated 10-year CVD risk (≥10%). Only 48.5% and 48.6% of women and 39.3% and 59.8% of men were on any kind of blood pressure (BP)-lowering medication, lipid-lowering medication, or antiplatelet therapy for primary and secondary prevention, respectively. Women with established CVD were significantly less likely than men to receive BP-lowering medications (OR, 0.79 [95% CI, 0.65-0.95]), lipid-lowering medications (OR, 0.69 [95% CI, 0.56-0.84]), antiplatelets (OR, 0.53 [95% CI, 0.45-0.62]), or any CVD prevention medication (OR, 0.62 [95% CI, 0.52-0.73]). Women with established CVD, however, had better BP control (OR, 1.31 [95% CI, 1.14-1.50]) but less well-controlled low-density lipoprotein cholesterol (OR, 0.66 [95% CI, 0.57-0.76]), and were less likely to smoke (OR, 13.89 [95% CI, 11.24-17.15]) and achieve physical activity targets (OR, 1.92 [95% CI, 1.61-2.29]). Conversely, women with high CVD risk were less likely than men to have their BP, low-density lipoprotein cholesterol, and bodyweight controlled (OR, 0.46 [95% CI, 0.38-0.55]; OR, 0.60 [95% CI, 0.52-0.69]; OR, 0.55 [95% CI, 0.48-0.63], respectively), despite a higher use of BP-lowering medications (OR, 1.21 [95% CI, 1.01-1.45]). Younger patients (<65 years) with established CVD were less likely to be taking CVD preventive medications, but there were no sex differences by area of residence or education level. Conclusions: Large and variable gaps in primary and secondary CVD prevention exist in China, particularly for women. Effective CVD prevention requires an improved overall nationwide strategy and a special emphasis on women with established CVD, who have the greatest disparity and the most to benefit

    Modification effect of changes in cardiometabolic traits in association between kidney stones and cardiovascular events

    Get PDF
    BackgroundsWhether longitudinal changes in metabolic status influence the effect of kidney stones on cardiovascular disease (CVD) remains unclarified. We investigated the modification effect of status changes in metabolic syndrome (MetS) in the association of kidney stones with risk of incident CVD events.MethodsWe performed a prospective association and interaction study in a nationwide cohort including 129,172 participants aged ≥ 40 years without CVDs at baseline and followed up for an average of 3.8 years. Kidney stones information was collected by using a questionnaire and validated by medical records. The repeated biochemical measurements were performed to ascertain the metabolic status at both baseline and follow-up.Results4,017 incident total CVDs, 1,413 coronary heart diseases (CHDs) and 2,682 strokes were documented and ascertained during follow-up. Kidney stones presence was significantly associated with 44%, 70% and 31% higher risk of CVDs, CHDs and stroke, respectively. The stratified analysis showed significant associations were found in the incident and sustained MetS patients, while no significant associations were found in the non-MetS at both baseline and follow-up subjects or the MetS remission ones, especially in women. For the change status of each single component of the MetS, though the trends were not always the same, the associations with CVD were consistently significant in those with sustained metabolic disorders, except for the sustained high blood glucose group, while the associations were consistently significant in those with incident metabolic disorders except for the incident blood pressure group. We also found a significant association of kidney stone and CVD or CHD risk in the remain normal glucose or triglycerides groups; while the associations were consistently significant in those with incident metabolic disorders except for the incident blood pressure group. We also found a significant association of kidney stone and CVD or CHD risk in the remain normal glucose or triglycerides groups.ConclusionsA history of kidney stones in women with newly developed MetS or long-standing MetS associated with increased risk of CVD. The mechanisms link kidney stones and CVD risk in the metabolic and non-metabolic pathways were warranted for further studies

    The Relative Body Weight Gain From Early to Middle Life Adulthood Associated With Later Life Risk of Diabetes: A Nationwide Cohort Study

    Get PDF
    AimTo determine the effect of decade-based body weight gain from 20 to 50 years of age on later life diabetes risk.Methods35,611 non-diabetic participants aged ≥ 50 years from a well-defined nationwide cohort were followed up for average of 3.6 years, with cardiovascular diseases and cancers at baseline were excluded. Body weight at 20, 30, 40, and 50 years was reported. The overall 30 years and each 10-year weight gain were calculated from the early and middle life. Cox regression models were used to estimate risks of incident diabetes.ResultsAfter 127,745.26 person-years of follow-up, 2,789 incident diabetes were identified (incidence rate, 2.18%) in 25,289 women (mean weight gain 20-50 years, 7.60 kg) and 10,322 men (7.93 kg). Each 10-kg weight gain over the 30 years was significantly associated with a 39.7% increased risk of incident diabetes (95% confidence interval [CI], 1.33-1.47); weight gain from 20-30 years showed a more prominent effect on the risk of developing diabetes before 60 years than that of after 60 years (Hazard ratio, HR = 1.084, 95% CI [1.049-1.121], P &lt;0.0001 vs. 1.015 [0.975-1.056], P = 0.4643; PInteraction=0.0293). It showed a stable effect of the three 10-year intervals weight gain on risk of diabetes after 60 years (HR=1.055, 1.038, 1.043, respectively, all P &lt; 0.0036).ConclusionsThe early life weight gain showed a more prominent effect on developing diabetes before 60 years than after 60 years; however, each-decade weight gain from 20 to 50 years showed a similar effect on risk developing diabetes after 60 years

    Corrigendum to: The TianQin project: current progress on science and technology

    Get PDF
    In the originally published version, this manuscript included an error related to indicating the corresponding author within the author list. This has now been corrected online to reflect the fact that author Jun Luo is the corresponding author of the article

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
    corecore