38 research outputs found

    Characterization and Inference of Gene Gain/Loss Along Burkholderia Evolutionary History

    Get PDF
    A comparative analysis of 60 complete Burkholderia genomes was conducted to obtain insight in the evolutionary history behind the diversity and pathogenicity at species level. A concatenated multiprotein phyletic pattern and a dataset with Burkholderia clusters of orthologous genes (BuCOGs) were constructed. The extent of horizontal gene transfer (HGT) was assessed using a Markov based probabilistic method. A reconstruction of the gene gains and losses history shows that more than half of the Burkholderia genes families are inferred to have experienced HGT at least once during their evolution. Further analysis revealed that the number of gene gain and loss was correlated with the branch length. Genomic islands (GEIs) analysis based on evolutionary history reconstruction not only revealed that most genes in ancient GEIs were gained but also suggested that the fraction of the genome located in GEIs in the small chromosomes is higher than in the large chromosomes in Burkholderia. The mapping of coexpressed genes onto biological pathway schemes revealed that pathogenicity of Burkholderia strains is probably mainly determined by the gained genes in its ancestor. Taken together, our results strongly support that gene gain and loss especially in ancient evolutionary history play an important role in strain divergence, pathogenicity determinants of Burkholderia and GEIs formation

    Interkingdom Gene Transfer May Contribute to the Evolution of Phytopathogenicity in Botrytis Cinerea

    Get PDF
    The ascomycete Botrytis cinerea is a phytopathogenic fungus infecting and causing significant yield losses in a number of crops. The genome of B. cinerea has been fully sequenced while the importance of horizontal gene transfer (HGT) to extend the host range in plant pathogenic fungi has been recently appreciated. However, recent data confirm that the B. cinerea fungus shares conserved virulence factors with other fungal plant pathogens with narrow host range. Therefore, interkingdom HGT may contribute to the evolution of phytopathogenicity in B. cinerea. In this study, a stringent genome comparison pipeline was used to identify potential genes that have been obtained by B. cinerea but not by other fungi through interkingdom HGT. This search led to the identification of four genes: a UDP-glucosyltransferase (UGT), a lipoprotein and two alpha/beta hydrolase fold proteins. Phylogenetic analysis of the four genes suggests that B. cinerea acquired UGT from plants and the other 3 genes from bacteria. Based on the known gene functions and literature searching, a correlation between gene acquision and the evolution of pathogenicity in B. cinerea can be postulated

    Enhancing Electrical Conductivity and Corrosion Resistance of CrN Coating by Pt Addition

    No full text
    Transition-metal nitride coating used to protect the electronic connector devices in marine environment is required to have high electrical conductivity and good corrosion resistance. This study synthesized a novel CrN–Pt coating with a dense growth texture. Pt addition induced a pronounced increase in electrical conductivity and corrosion resistance. The resistivity decreased from 0.0149 Ohm·cm in the CrN coating to 0.000472 Ohm·cm in the CrN–Pt coating, while the corrosion current density decreased from 24 nA/cm2 in the CrN coating to 6.3 nA/cm2 in the CrN–Pt coating. The results of the above studies confirm that Pt doping has significant advantages in improving the electrical conductivity and corrosion resistance of nitride coatings for potential applications in the marine environment

    Metabonomics of d-glucaro-1,4-lactone in preventing diethylnitrosamine-induced liver cancer in rats

    No full text
    Context: d-Glucaro-1,4-lactone (1,4-GL) exists in many vegetables and fruits. Metabonomics has not been used to investigate the role of 1,4-GL in preventing liver cancer. Objective: The pharmacological effects and metabolite alterations of 1,4-GL on the prevention of diethylnitrosamine (DEN)-induced liver cancer were investigated. Materials and methods: Ten healthy Sprague–Dawley rats served as control and 46 were used to establish rat liver cancer model. 1HNMR-based metabonomics was used to compare the effects of oral 1,4-GL (50 mg/kg) in liver cancer rats (n = 26) after 10 consecutive weeks of intervention. The amino acids in rat serum were quantified by HPLC-UV, and the changes in Fischer’s ratio were calculated. Results: The 20-week survival rate of DEN-induced liver cancer rats administered with oral 1,4-GL was increased from 45.0 to 70.0% with reduced carcinogenesis of the liver and significantly lowered serum α-fetoprotein level (14.28 ± 2.89 ng/mL vs. 18.56 ± 4.65 ng/mL, p = 0.012). The serum levels of leucine, valine, 3-hydroxybutyrate, lactate, acetate and glutamine in the DEN + 1,4-GL group returned to normal levels compared with those of the DEN group on week 20. Fischer’s ratio in the rat serum of DEN group was 1.62 ± 0.21, which was significantly lower than that in healthy rats (2.3 ± 0.12). However, Fischer’s ratio increased to 1.89 ± 0.22 in the DEN + 1,4-GL group. Discussion and conclusions: 1,4-GL exerted positive effects on liver carcinogenesis in rats by pathological examination and metabonomic analysis. Its mechanism may be related to the restoration of amino acid and energy metabolism

    The community composition variation of Russulaceae associated with the Quercus mongolica forest during the growing season at Wudalianchi City, China

    No full text
    Background Most species of the Russulaceae are ectomycorrhizal (ECM) fungi, which are widely distributed in different types of forest ecology and drive important ecological and economic functions. Little is known about the composition variation of the Russulaceae fungal community aboveground and in the root and soil during the growing season (June–October) from a Quercus mongolica forest. In this study, we investigated the changes in the composition of the Russulaceae during the growing season of this type of forest in Wudalianchi City, China. Methods To achieve this, the Sanger sequencing method was used to identify the Russulaceae aboveground, and the high-throughput sequencing method was used to analyze the species composition of the Russulaceae in the root and soil. Moreover, we used the Pearson correlation analysis, the redundancy analysis and the multivariate linear regression analysis to analyze which factors significantly affected the composition and distribution of the Russulaceae fungal community. Results A total of 56 species of Russulaceae were detected in the Q. mongolica forest, which included 48 species of Russula, seven species of Lactarius, and one species of Lactifluus. Russula was the dominant group. During the growing season, the sporocarps of Russula appeared earlier than those of Lactarius. The number of species aboveground exhibited a decrease after the increase and were significantly affected by the average monthly air temperature (r = −0.822, p = 0.045), average monthly relative humidity (r = −0.826, p = 0.043), monthly rainfall (r = 0.850, p = 0.032), soil moisture (r = 0.841, p = 0.036) and soil organic matter (r = 0.911, p = 0.012). In the roots and soils under the Q. mongolica forest, the number of species did not show an apparent trend. The number of species from the roots was the largest in September and the lowest in August, while those from the soils were the largest in October and the lowest in June. Both were significantly affected by the average monthly air temperature (r2 = 0.6083, p = 0.040) and monthly rainfall (r2 = 0.6354, p = 0.039). Moreover, the relative abundance of Russula and Lactarius in the roots and soils showed a linear correlation with the relative abundance of the other fungal genera

    Integrated network pharmacology and metabolomics reveal the mechanisms of Jasminum elongatum in anti-ulcerative colitis

    No full text
    Abstract Jasminum elongatum (JE), an ethnic Chinese medicine, is widely used in the Lingnan region of China, because of its analgesic and antidiarrheal action, as well as its anti-inflammatory effects in gastrointestinal diseases. However, whether JE could against ulcerative colitis (UC) remains unclear. This research aims to reveal JE in treating UC and clarify the underlying mechanism. We used the 2.5% dextran sulfate sodium (DSS)-induced UC mice (C57BL/6J) to evaluate the therapeutic effects of JE. Metabolomics of serum and network pharmacology were combined to draw target-metabolite pathways. Apart from that, the targets of associated pathways were confirmed, and the mechanism of action was made clear, using immunohistochemistry. The pharmacodynamic results, including disease activity index (DAI), histological evaluation, and inflammatory cytokines in colon tissues, demonstrated that JE significantly relieved the physiological and pathological symptoms of UC. Network pharmacology analysis indicated 25 core targets, such as TNF, IL-6, PTGS2 and RELA, and four key pathways, including the NF-κB signaling pathway and arachidonic acid metabolism pathway, which were the key connections between JE and UC. Metabolomics analysis identified 45 endogenous differential metabolites and 9 metabolic pathways by enrichment, with the arachidonic acid metabolism pathway being the main metabolism pathway, consistent with the prediction of network pharmacology. IκB, p65 and COX-2 were identified as key targets and this study demonstrated for the first time that JE reverses 2.5% DSS-induced UC in mice via the IκB/p65/COX-2/arachidonic acid pathway. This study reveals the complex mechanisms underlying the therapeutic effects of JE on UC and provides a new approach to identifying the underlying mechanisms of the pharmacological action of Chinese natural medicines such as JE

    Gene Expression of Type VI Secretion System Associated with Environmental Survival in Acidovorax avenae subsp. avenae by Principle Component Analysis

    No full text
    Valine glycine repeat G (VgrG) proteins are regarded as one of two effectors of Type VI secretion system (T6SS) which is a complex multi-component secretion system. In this study, potential biological roles of T6SS structural and VgrG genes in a rice bacterial pathogen, Acidovorax avenae subsp. avenae (Aaa) RS-1, were evaluated under seven stress conditions using principle component analysis of gene expression. The results showed that growth of the pathogen was reduced by H2O2 and paraquat-induced oxidative stress, high salt, low temperature, and vgrG mutation, compared to the control. However, pathogen growth was unaffected by co-culture with a rice rhizobacterium Burkholderia seminalis R456. In addition, expression of 14 T6SS structural and eight vgrG genes was significantly changed under seven conditions. Among different stress conditions, high salt, and low temperature showed a higher effect on the expression of T6SS gene compared with host infection and other environmental conditions. As a first report, this study revealed an association of T6SS gene expression of the pathogen with the host infection, gene mutation, and some common environmental stresses. The results of this research can increase understanding of the biological function of T6SS in this economically-important pathogen of rice
    corecore