4,092 research outputs found

    MicroRNA-9 promotes tumor metastasis via repressing E-cadherin in esophageal squamous cell carcinoma

    Get PDF
    MicroRNAs (miRNAs) play a critical role in development and progression of cancers. Deregulation of MicroRNA-9 (miR-9) has been documented in many types of cancers but their role in the development of esophageal squamous cell carcinoma (ESCC) has not been studied. This study aimed to investigate the effect of miR-9 in esophageal cancer metastasis. The up-regulation of miR-9 was frequently detected in primary ESCC tumor tissue, which was significantly associated with clinical progression (P = 0.022), lymph node metastasis (P = 0.007) and poor overall survival (P < 0.001). Functional study demonstrated that miR-9 promoted cell migration and tumor metastasis, which were effectively inhibited when expression of miR-9 was silenced. Moreover, we demonstrated that miR-9 interacted with the 3'-untranslated region of E-cadherin and down-regulated its expression, which induced beta-catenin nuclear translocation and subsequently up-regulated c-myc and CD44 expression. In addition, miR-9 induced epithelial-mesenchymal transition (EMT) in ESCC, a key event in tumor metastasis. Taken together, our study demonstrates that miR-9 plays an important role in ESCC metastasis by activating beta-catenin pathway and inducing EMT via targeting E-cadherin. Our study also suggests miR-9 can be served as a new independent prognostic marker and/or as a novel potential therapeutic target for ESCC.published_or_final_versio

    The inhibitory effect of Binens bipinnata L. extract on U14 tumour in mice

    Get PDF
    The objective of this paper was to study the in vitro and in vivo inhibitory effect of Bidens bipinnata L. extract on growth of cervical carcinoma U14 cells. MTT method was used to determine the inhibitory effect of Bidens bipinnata L. extract on U14 tumour cells, and the effects of Bidens bipinnata L. extract on inhibition rate of solid tumour and life prolongation rate of ascites tumour were observed through the establishment of two animal models of mouse cervical carcinoma U14 solid tumour and ascitestumour. In the in vitro MTT assay, the inhibition rate gradually increased with the increase of dose of Bidens bipinnata L. and the extension of time. Its inhibition rate was 70.44% at a concentration of 80ìg/L. Solid tumour inhibition rates in the high- and low-dose groups and cisplatin group were 49.13%, 2.26% and 75.72% respectively; life prolongation rates in each ascites tumour group were 63.63%, 34.86% and 87.34% respectively. The Bidens bipinnata L. extract has a certain inhibitory effect on growth of mouse cervical carcinoma U14.Keywords: Bidens bipinnata L. extract; U14; solid tumour; ascites tumou

    Transcription-coupled structural dynamics of topologically associating domains regulate replication origin efficiency

    Full text link
    Background Metazoan cells only utilize a small subset of the potential DNA replication origins to duplicate the whole genome in each cell cycle. Origin choice is linked to cell growth, differentiation, and replication stress. Although various genetic and epigenetic signatures have been linked to the replication efficiency of origins, there is no consensus on how the selection of origins is determined. Results We apply dual-color stochastic optical reconstruction microscopy (STORM) super-resolution imaging to map the spatial distribution of origins within individual topologically associating domains (TADs). We find that multiple replication origins initiate separately at the spatial boundary of a TAD at the beginning of the S phase. Intriguingly, while both high-efficiency and low-efficiency origins are distributed homogeneously in the TAD during the G1 phase, high-efficiency origins relocate to the TAD periphery before the S phase. Origin relocalization is dependent on both transcription and CTCF-mediated chromatin structure. Further, we observe that the replication machinery protein PCNA forms immobile clusters around TADs at the G1/S transition, explaining why origins at the TAD periphery are preferentially fired. Conclusion Our work reveals a new origin selection mechanism that the replication efficiency of origins is determined by their physical distribution in the chromatin domain, which undergoes a transcription-dependent structural re-organization process. Our model explains the complex links between replication origin efficiency and many genetic and epigenetic signatures that mark active transcription. The coordination between DNA replication, transcription, and chromatin organization inside individual TADs also provides new insights into the biological functions of sub-domain chromatin structural dynamics

    Optical-controlled ultrafast dynamics of skyrmion in antiferromagnets

    Full text link
    Optical vortex, a light beam carrying orbital angular momentum (OAM) has been realized in experiments, and its interactions with magnets show abundant physical characteristics and great application potentials. In this work, we propose that optical vortex can control skyrmion ultrafast in antiferromagnets using numerical and analytical methods. Isolated skyrmion can be generated/erased in a very short time ~ps by beam focusing. Subsequently, the OAM is transferred to the skyrmion and results in its rotation motion. Different from the case of ferromagnets, the rotation direction can be modulated through tuning the light frequency in antiferromagnets, allowing one to control the rotation easily. Furthermore, the skyrmion Hall motion driven by multipolar spin waves excited by optical vortex is revealed numerically, demonstrating the dependence of the Hall angle on the OAM quantum number. This work unveils the interesting optical-controlled skyrmion dynamics in antiferromagnets, which is a crucial step towards the development of optics and spintronics.Comment: 19 pages, 6 figure

    Gate-Voltage Control of Chemical Potential and Weak Anti-localization in Bismuth Selenide

    Full text link
    We report that Bi2_2Se3_3 thin films can be epitaxially grown on SrTiO3_{3} substrates, which allow for very large tunablity in carrier density with a back-gate. The observed low field magnetoconductivity due to weak anti-localization (WAL) has a very weak gate-voltage dependence unless the electron density is reduced to very low values. Such a transition in WAL is correlated with unusual changes in longitudinal and Hall resistivities. Our results suggest much suppressed bulk conductivity at large negative gate-voltages and a possible role of surface states in the WAL phenomena. This work may pave a way for realizing three-dimensional topological insulators at ambient conditions.Comment: 5 pages, 4 figures

    Continuous twin screw rheo-extrusion of an AZ91D magnesium alloy

    Get PDF
    © The Minerals, Metals & Materials Society and ASM International 2012The twin screw rheo-extrusion (TSRE) is designed to take advantage of the nondendritc microstructure and thixotropic characterization of semisolid-metal slurries and produce simple metal profiles directly from melts. The extrusion equipment consists of a rotor-stator high shear slurry maker, a twin screw extruder, and a die assembly. The process is continuous and has a potential for significantly saving energy, manufacturing cost, and enhancing efficiency. The present investigation was carried out to study the process performance for processing rods of an AZ91D magnesium alloy and the microstructure evolution during processing. The semisolid slurry prepared by the process was characterized by uniformly distributed nondendritic granular primary phase particles. AZ91D rods with uniform and fine microstructures and moderate mechanical properties were produced. For the given slurry making parameters, decreasing extrusion temperature was found to improve microstructures and properties. The mechanisms of particle granulation and refinement and the effect of processing parameters on process performance and thermal management are discussed. © 2012 The Minerals, Metals & Materials Society and ASM International.EPSRC (UK) and Rautomead Lt

    Measurement of proton electromagnetic form factors in e+eppˉe^+e^- \to p\bar{p} in the energy region 2.00-3.08 GeV

    Full text link
    The process of e+eppˉe^+e^- \rightarrow p\bar{p} is studied at 22 center-of-mass energy points (s\sqrt{s}) from 2.00 to 3.08 GeV, exploiting 688.5~pb1^{-1} of data collected with the BESIII detector operating at the BEPCII collider. The Born cross section~(σppˉ\sigma_{p\bar{p}}) of e+eppˉe^+e^- \rightarrow p\bar{p} is measured with the energy-scan technique and it is found to be consistent with previously published data, but with much improved accuracy. In addition, the electromagnetic form-factor ratio (GE/GM|G_{E}/G_{M}|) and the value of the effective (Geff|G_{\rm{eff}}|), electric (GE|G_E|) and magnetic (GM|G_M|) form factors are measured by studying the helicity angle of the proton at 16 center-of-mass energy points. GE/GM|G_{E}/G_{M}| and GM|G_M| are determined with high accuracy, providing uncertainties comparable to data in the space-like region, and GE|G_E| is measured for the first time. We reach unprecedented accuracy, and precision results in the time-like region provide information to improve our understanding of the proton inner structure and to test theoretical models which depend on non-perturbative Quantum Chromodynamics

    An amplitude analysis of the π0π0\pi^{0}\pi^{0} system produced in radiative J/ψJ/\psi decays

    Get PDF
    An amplitude analysis of the π0π0\pi^{0}\pi^{0} system produced in radiative J/ψJ/\psi decays is presented. In particular, a piecewise function that describes the dynamics of the π0π0\pi^{0}\pi^{0} system is determined as a function of Mπ0π0M_{\pi^{0}\pi^{0}} from an analysis of the (1.311±0.011)×109(1.311\pm0.011)\times10^{9} J/ψJ/\psi decays collected by the BESIII detector. The goal of this analysis is to provide a description of the scalar and tensor components of the π0π0\pi^0\pi^0 system while making minimal assumptions about the properties or number of poles in the amplitude. Such a model-independent description allows one to integrate these results with other related results from complementary reactions in the development of phenomenological models, which can then be used to directly fit experimental data to obtain parameters of interest. The branching fraction of J/ψγπ0π0J/\psi \to \gamma \pi^{0}\pi^{0} is determined to be (1.15±0.05)×103(1.15\pm0.05)\times10^{-3}, where the uncertainty is systematic only and the statistical uncertainty is negligible.Comment: Submitted to Phys. Rev. D 19 pages, 4 figure

    Search for the radiative transitions ψ(3770)γηc\psi(3770)\to\gamma\eta_c and γηc(2S)\gamma\eta_c(2S)

    Full text link
    By using a 2.92 fb1^{-1} data sample taken at s=3.773\sqrt{s} = 3.773 GeV with the BESIII detector operating at the BEPCII collider, we search for the radiative transitions ψ(3770)γηc\psi(3770)\to\gamma\eta_c and γηc(2S)\gamma\eta_c(2S) through the hadronic decays ηc(ηc(2S))KS0K±π\eta_c(\eta_c(2S))\to K^0_SK^\pm\pi^\mp. No significant excess of signal events above background is observed. We set upper limits at a 90% confidence level for the product branching fractions to be B(ψ(3770)γηc)×B(ηcKS0K±π)<1.6×105\mathcal{B}(\psi(3770)\to\gamma\eta_c)\times \mathcal{B}(\eta_c\to K^0_SK^\pm\pi^\mp) < 1.6\times10^{-5} and B(ψ(3770)γηc(2S))×B(ηc(2S)KS0K±π)<5.6×106\mathcal{B}(\psi(3770)\to\gamma\eta_c(2S))\times \mathcal{B}(\eta_c(2S)\to K^0_SK^\pm\pi^\mp) < 5.6\times10^{-6}. Combining our result with world-average values of B(ηc(ηc(2S))KS0K±π)\mathcal{B}(\eta_c(\eta_c(2S))\to K^0_SK^\pm\pi^\mp), we find the branching fractions B(ψ(3770)γηc)<6.8×104\mathcal{B}(\psi(3770)\to\gamma\eta_c) < 6.8\times10^{-4} and B(ψ(3770)γηc(2S))<2.0×103\mathcal{B}(\psi(3770)\to\gamma\eta_c(2S)) < 2.0\times10^{-3} at a 90% confidence level.Comment: 10 pages, 4 figure
    corecore