140 research outputs found

    Whole genome sequencing of four representatives from the admixed population of the United Arab Emirates

    Get PDF
    © Copyright © 2020 Daw Elbait, Henschel, Tay and Al Safar. Whole genome sequences (WGS) of four nationals of the United Arab Emirates (UAE) at an average coverage of 33X have been completed and described. The selection of suitable subpopulation representatives was informed by a preceding comprehensive population structure analysis. Representatives were chosen based on their central location within the subpopulation on a principal component analysis (PCA) and the degree to which they were admixed. Novel genomic variations among the different subgroups of the UAE population are reported here. Specifically, the WGS analysis identified 4,161,067–4,798,806 variants in the four individual samples, where approximately 80% were single nucleotide polymorphisms (SNPs) and 20% were insertions or deletions (indels). An average of 2.75% was found to be novel variants according to dbSNP (build 151). This is the first report of structural variants (SV) from WGS data from UAE nationals. There were 15,677–20,339 called SVs, of which around 13.5% were novel. The four samples shared 1,399,178 variants, each with distinct variants as follows: 1,085,524 (for the individual denoted as UAE S011), 1,228,559 (UAE S012), 791,072 (UAE S013), and 906,818 (UAE S014). These results show a previously unappreciated population diversity in the region. The synergy of WGS and genotype array data was demonstrated through variant annotation of the former using 2.3 million allele frequencies for the local population derived from the latter technology platform. This novel approach of combining breadth and depth of array and WGS technologies has guided the choice of population genetic representatives and provides complementary, regionalized allele frequency annotation to new genomes comprising millions of loci

    Genetic diversity and low stratification of the population of the United Arab Emirates

    Get PDF
    © Copyright © 2020 Tay, Henschel, Daw Elbait and Al Safar. With high consanguinity rates on the Arabian Peninsula, it would not have been unexpected if the population of the United Arab Emirates (UAE) was shown to be relatively homogenous. However, this study of 1000 UAE nationals provided a contrasting perspective, one of a relatively heterogeneous population. Located at the apex of Europe, Asia, and Africa, the observed diversity could be explained by a plethora of migration patterns since the first Out-of-Africa movement. A strategy to explore the extent of genetic variation of the population of the UAE is presented. The first step involved a comprehensive population stratification study that was instructive for subsequent whole genome sequencing (WGS) of suitable representatives (which is described elsewhere). When these UAE data were compared to previous smaller studies from the region, the findings were consistent with a population that is a diverse and admixed group of people. However, rather than sharp and distinctive clusters, cluster analysis reveals low levels of stratification throughout the population. UAE emirates exhibit high within-Emirate-distance/among-Emirate distance ratios. Supervised admixture analysis showed a continuous gradient of ancestral populations, suggesting that admixture on the south eastern tip of the Arabian Peninsula occurred gradually. When visualized using a unique technique that combined admixture ratios and principal component analysis (PCA), unappreciated diversity was revealed while mitigating projection bias of conventional PCA. We observe low population stratification in the UAE in terms of homozygosity versus separation cluster coefficients. This holds for the UAE in a global context as well as for isolated cluster analysis of the Emirati birthplaces. However, the subtle clustering observed in the Emirates reflects geographic proximity and historic migration events. The analytical strategy used here highlights the complementary nature of data from genotype array and WGS for anthropological studies. Specifically, genotype array data were instructive to select representative subjects for WGS. Furthermore, from the 2.3 million allele frequencies obtained from genotype arrays, we identified 46,481 loci with allele frequencies that were significantly different with respect to other world populations. This comparison of allele frequencies facilitates variant prioritization in common diseases. In addition, these loci bear great potential as biomarkers in anthropological and forensic studies

    A population-specific major allele reference genome from the United Arab Emirates population

    Get PDF
    The ethnic composition of the population of a country contributes to the uniqueness of each national DNA sequencing project and, ideally, individual reference genomes are required to reduce the confounding nature of ethnic bias. This work represents a representative Whole Genome Sequencing effort of an understudied population. Specifically, high coverage consensus sequences from 120 whole genomes and 33 whole exomes were used to construct the first ever population specific major allele reference genome for the United Arab Emirates (UAE). When this was applied and compared to the archetype hg19 reference, assembly of local Emirati genomes was reduced by ∼19% (i.e., some 1 million fewer calls). In compiling the United Arab Emirates Reference Genome (UAERG), sets of annotated 23,038,090 short (novel: 1,790,171) and 137,713 structural (novel: 8,462) variants; their allele frequencies (AFs) and distribution across the genome were identified. Population-specific genetic characteristics including loss-of-function variants, admixture, and ancestral haplogroup distribution were identified and reported here. We also detect a strong correlation between F and admixture components in the UAE. This baseline study was conceived to establish a high-quality reference genome and a genetic variations resource to enable the development of regional population specific initiatives and thus inform the application of population studies and precision medicine in the UAE. S

    Major histocompatibility complex (MHC) associations with diseases in ethnic groups of the Arabian Peninsula

    Get PDF
    © 2021, The Author(s). Since the discovery of human leukocyte antigens (HLAs), the function of major histocompatibility complex (MHC) gene families in a wide range of diseases have been the subject of research for decades. In particular, the associations of autoimmune disorders to allelic variants and candidate genes encoding the MHC are well documented. However, despite decades of research, the knowledge of MHC associations with human disease susceptibility have been predominantly studied in European origin, with limited understanding in different populations and ethnic groups. This is particularly evident in countries and ethnic populations of the Arabian Peninsula. Human MHC haplotypes, and its association with diseases, of the variable ethnic groups of this region are poorly studied. This review compiled published manuscripts that have reported a list of autoimmune diseases (insulin-dependent diabetes mellitus, systemic lupus erythematosus, myasthenia gravis, rheumatoid arthritis, psoriasis vulgaris, and multiple sclerosis) associated with MHC class I and class II in the populations of the Arabian Peninsula, specifically Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, the United Arab Emirates, and Yemen. Data available was compared with other three ethnic groups, namely Caucasians, Asians, and Africans. The limited data available in the public domain on the association between MHC gene and autoimmune diseases highlight the challenges in the Middle Eastern region

    Stratified analyses of genome wide association study data reveal haplotypes for a candidate gene on chromosome 2 (KIAA1211L) is associated with opioid use in patients of Arabian descent

    Get PDF
    Background: Genome Wide Association Studies (GWAS) have been conducted to identify genes and pathways involved in development of opioid use disorder. This study extends the first GWAS of substance use disorder (SUD) patients from the United Arab Emirates (UAE) by stratifying the study group based on opioid use, which is the most common substance of use in this cohort. Methods: The GWAS cohort consisted of 512 (262 case, 250 controls) male participants from the UAE. The samples were genotyped using the Illumina Omni5 Exome system. Data was stratified according to opioid use using PLINK. Haplotype analysis was conducted using Haploview 4.2. Results: Two main associations were identified in this study. Firstly, two SNPs on chromosome 7 were associated with opioid use disorder, rs118129027 (p-value = 1.23 × 10 -8) and rs74477937 (p-value = 1.48 × 10 -8). This has been reported in Alblooshi et al. (Am J Med Genet B Neuropsychiatr Genet 180(1):68-79, 2019). Secondly, haplotypes on chromosome 2 which mapped to the KIAA1211L locus were identified in association with opioid use. Five SNPs in high linkage disequilibrium (LD) (rs2280142, rs6542837, rs12712037, rs10175560, rs11900524) were arranged into haplotypes. Two haplotypes GAGCG and AGTTA were associated with opioid use disorders (p-value 3.26 × 10-8 and 7.16 × 10-7, respectively). Conclusion: This is the first GWAS to identify candidate genes associated with opioid use disorder in participants from the UAE. The lack of other genetic data of Arabian descent opioid use patients has hindered replication of the findings. Nevertheless, the outcomes implicate new pathways in opioid use disorder that requires further research to assess the role of the identified genes in the development of opioid use disorder

    Genetics of diabetic kidney disease: A follow-up study in the Arab population of the United Arab Emirates

    Get PDF
    Background: Two genome-wide association studies in European and Japanese populations reported on new loci for diabetic kidney disease (DKD), including FTO. In this study, we have replicated these investigations on a cohort of 410 Type 2 diabetes mellitus (T2DM) patients of Arab origin from the United Arab Emirates (UAE). Methods and Results: The cohort included 145 diabetic patients diagnosed with DKD and 265 diabetics free of the disease. In general, we were able to confirm the association between the FTO locus and DKD, as reported in the Japanese population. Specifically, there were significant associations with two single nucleotide polymorphisms (SNPs), namely rs1421086 (p =.013, OR = 1.52 depending on allele G, 95% CI: 1.09–2.11) and rs17817449 (p =.0088, OR = 1.55 depending on allele C, 95% CI: 1.12–2.14) of the FTO locus. Both SNPs were in linkage disequilibrium with rs56094641, also as reported in the Japanese population. While the alleles of both SNPs, which increase the risk of DKD, were associated with higher Body Mass Index (BMI), their associations with DKD were independent of the BMI effects. Conclusions: This study confirms that FTO is a multiethnic locus for DKD which is independent from any influence of BMI and/or obesity

    Clinical and genetic associations of renal function and diabetic kidney disease in the United Arab Emirates: A cross-sectional study

    Get PDF
    OBJECTIVES: Within the Emirati population, risk factors and genetic predisposition to diabetic kidney disease (DKD) have not yet been investigated. The aim of this research was to determine potential clinical, laboratory and reported genetic loci as risk factors for DKD. RESEARCH DESIGN AND METHODS: Four hundred and ninety unrelated Emirati nationals with type 2 diabetes mellitus (T2DM) were recruited with and without DKD, and clinical and laboratory data were obtained. Following adjustments for possible confounders, a logistic regression model was developed to test the associations of 63 single nucleotide polymorphisms (SNPs) in 43 genetic loci with DKD (145 patients with DKD and 265 without DKD). Linear regression models, adjusted for age and gender, were then used to study the genetic associations of five renal function traits, including 83 SNPs with albumin-to-creatinine ratio, 92 SNPs with vitamin D (25-OH cholecalciferol), 288 SNPs with estimated glomerular filtration rate (eGFR), 363 SNPs with serum creatinine and 73 SNPs with blood urea. RESULTS: Patients with DKD, as compared with those without the disease, were mostly men (52%vs38% for controls), older (67vs59 years) and had significant rates of hypertension and dyslipidaemia. Furthermore, patients with DKD had T2DM for a longer duration of time (16vs10 years), which in an additive manner was the single factor that significantly contributed to the development of DKD (p=0.02, OR=3.12, 95% CI 1.21 to 8.02). Among the replicated associations of the genetic loci with different renal function traits, the most notable included CONCLUSIONS: Associations were found between several genetic loci and risk markers for DKD, which may influence kidney function traits and DKD in a population of Arab ancestry

    Introducing the first whole genomes of nationals from the United Arab Emirates

    Get PDF
    Whole Genome Sequencing (WGS) provides an in depth description of genome variation. In the era of large-scale population genome projects, the assembly of ethnic-specific genomes combined with mapping human reference genomes of underrepresented populations has improved the understanding of human diversity and disease associations. In this study, for the first time, whole genome sequences of two nationals of the United Arab Emirates (UAE) at \u3e27X coverage are reported. The two Emirati individuals were predominantly of Central/South Asian ancestry. An in-house customized pipeline using BWA, Picard followed by the GATK tools to map the raw data from whole genome sequences of both individuals was used. A total of 3,994,521 variants (3,350,574 Single Nucleotide Polymorphisms (SNPs) and 643,947 indels) were identified for the first individual, the UAE S001 sample. A similar number of variants, 4,031,580 (3,373,501 SNPs and 658,079 indels), were identified for UAE S002. Variants that are associated with diabetes, hypertension, increased cholesterol levels, and obesity were also identified in these individuals. These Whole Genome Sequences has provided a starting point for constructing a UAE reference panel which will lead to improvements in the delivery of precision medicine, quality of life for affected individuals and a reduction in healthcare costs. The information compiled will likely lead to the identification of target genes that could potentially lead to the development of novel therapeutic modalities
    • …
    corecore