31 research outputs found

    Research on Influences of Transient High IOP during LASIK on Retinal Functions and Ultrastructure

    Get PDF
    Objectives. To study the influences of transient high intraocular pressure(IOP) during LASIK on retinal functions and ultrastructure. Methods. Thirty-two New Zealand white rabbits were randomly divided into normal control, experimental control, negative suction 20 s and negative suction 3 min groups. The experimental control group was treated only by laser. Rabbit eyes received suction for different periods of time (20 s, 3 min) by negative pressure generator in different groups. The changes of neuro-optic and retinal ultrastructure were observed under electron and light microscopes; retinal neurofunctional changes were observed with flash-visual evoked potential (F-VEP) and flash-electroreinogram (F-ERG). Results. There was no obvious change in optic nerve, retina, ERG a-wave and b-wave in normal control and experimental control groups. There were slight changes in tissues of optic nerve and retina at various times of suction 20 s compared with control group, and a sharp change in suction 3 min group within 14d after operation, but these changes recovered at 28d . Amplitude of ERG b-wave observed at different time will decrease with suction periods prolonged. It can recover to normal level with the prolonged recovery periods. Amplitude and incubation period of ERG a-wave and VEP-P did not change significantly after different duration of suction. Conclusions. The transient high IOP during LASIK might have influence on retinal function and ultrastructure, but these changes were reversible

    Comparative pharmacokinetics of polymyxin B in critically ill elderly patients with extensively drug-resistant gram-negative bacteria infections

    Get PDF
    Introduction: Elderly patients are more prone to develop acute kidney injury during infections and polymyxin B (PMB)-associated nephrotoxicity than young patients. The differential response to PMB between the elderly and young critically ill patients is unknown. We aimed to assess PMB exposure in elderly patients compared with young critically ill patients, and to determine the covariates of PMB pharmacokinetics in critically ill patients.Methods: Seventeen elderly patients (age ≥ 65 years) and six young critically ill patients (age < 65 years) were enrolled. Six to eight blood samples were collected during the 12 h intervals after at least six doses of intravenous PMB in each patient. PMB plasma concentrations were quantified by high-performance liquid chromatography-tandem mass spectrometry. The primary outcome was PMB exposure as assessed by the area under the concentration-time curve over 24 h at steady state (AUCss, 0–24 h).Results and Discussion: The elderly group had lower total body weight (TBW) and higher Charlson comorbidity scores than young group. Neither AUCss, 0–24 h nor normalized AUCss, 0–24 h (adjusting AUC for the daily dose in mg/kg of TBW) was significantly different between the elderly group and young group. The half-life time was longer in the elderly patients than in young patients (11.21 vs 6.56 h respectively, p = 0.003). Age and TBW were the covariates of half-life time (r = 0.415, p = 0.049 and r = −0.489, p = 0.018, respectively). TBW was the covariate of clearance (r = 0.527, p = 0.010) and AUCss, 0–24 h (r = −0.414, p = 0.049). Patients with AUCss, 0–24 h ≥ 100 mg·h/L had higher baseline serum creatinine levels and lower TBW than patients with AUCss, 0–24 h < 50 mg·h/L or patients with AUCss, 0–24 h 50–100 mg·h/L. The PMB exposures were comparable in elderly and young critically ill patients. High baseline serum creatinine levels and low TBW was associated with PMB overdose.Trial registration: ChiCTR2300073896 retrospectively registered on 25 July 2023

    Suppression strategies in different propagation periods of cyberattacks in merging area under connected environment

    No full text
    In order to ensure the safety of connected and automated vehicles (CAVs) threatened by cyberattack in the confluence area and mitigate the adverse impact of cyberattack propagation, a framework is built to depict the impact of cyberattacks on traffic operation. Based on this framework, corresponding propagation suppression strategies are proposed for different types of cyberattacks in different periods. Under centralized control, game theory is used to solve the confluence sequence corresponding to the strategies. The results show that the proposed method can effectively inhibit the spread of cyberattacks on the premise of security. The initial control effect is the best. Compared with uncontrolled condition, in the 100 timesteps, 11 susceptible vehicles are finally added, and the second is the immunity period, in which 10 susceptible vehicles were protected from cyberattack. Outbreak and latency control strategies also protect some vehicles. Under the control strategy of each stage, the peak value of infected vehicles and the duration of cyberattack are improved compared with the uncontrolled strategy. In addition, the traffic efficiency in the confluence area is also improved. This method can also be extended to such road types as diverging section, weaving section and intersection, so as to reduce the impact of cyberattacks on road network scale

    Metabolic memory in mitochondrial oxidative damage triggers diabetic retinopathy

    No full text
    Abstract Background Diabetic retinopathy (DR) is a microvascular complication induced by high blood glucose. This study was conducted to investigate the effect of metabolic memory on mitochondrial oxidative damage-induced DR. Methods Rat retinal endothelial cells (rRECs) were isolated from SD rats and treated with high glucose (20 mM) for various times and then cultured in normal glucose (5.6 mM) medium for 2 days. The cells were assayed for the expression of respiratory chain complexes cytochrome c oxidase subunit 1 (CO1) and NADPH-1 using RT-PCR, mitochondrial membrane potentials and reactive oxygen species (ROS) production using flow cytometry and apoptosis using Annexin V/PI flow cytometry. Results rRECs displayed like short spindles after cultured for 9–10 days and reached 100% confluency. Compared with the control grown in normal glucose (5.6 mM) medium, rRECs exposed to high glucose medium for 3, 12 and 24 h had significantly increased mRNA levels of CO1 and NAPDH-1 even after being shifted back to normal glucose medium. They also had lower mitochondrial membrane potential (89.13% vs 78.21%, p < 0.05), cytochrome C level (1 in control vs 0.25 after 24 h exposure to high glucose, p < 0.05 and higher ROS production (2.77% in control vs 9.00% after 12 h exposure to high glucose, p < 0.05) and apoptosis (7.15% in control vs and 29.91% after 24 h exposure to high glucose, p < 0.05). Conclusion It is likely that mitochondrial oxidative damage triggers metabolic memory via ROS overproduction, leading to diabetic retinopathy

    Can we trust your explanations? Sanity checks for interpreters in android malware analysis

    No full text
    With the rapid growth of Android malware, many machine learning-based malware analysis approaches are proposed to mitigate the severe phenomenon. However, such classifiers are opaque, non-intuitive, and difficult for analysts to understand the inner decision reason. For this reason, a variety of explanation approaches are proposed to interpret predictions by providing important features. Unfortunately, the explanation results obtained in the malware analysis domain cannot achieve a consensus in general, which makes the analysts confused about whether they can trust such results. In this work, we propose principled guidelines to assess the quality of five explanation approaches by designing three critical quantitative metrics to measure their stability, robustness, and effectiveness. Furthermore, we collect five widely-used malware datasets and apply the explanation approaches on them in two tasks, including malware detection and familial identification. Based on the generated explanation results, we conduct a sanity check of such explanation approaches in terms of the three metrics. The results demonstrate that our metrics can assess the explanation approaches and help us obtain the knowledge of most typical malicious behaviors for malware analysis

    A new synergetic system based on triboelectric nanogenerator and corrosion inhibitor for enhanced anticorrosion performance

    No full text
    A new synergetic anticorrosion system was constructed via combining a self-powered cathodic protection based on triboelectric nanogenerator (TENG) and a green corrosion inhibitor of zinc gluconate (ZnG). Wind-driven TENG with a sandwich-like structure was designed, exhibiting high output performance with the peak values of short circuit current, output voltage and corresponding power reaching about 155 mu A, 402 V and 13.5 mW, respectively, under a wind speed of 10 m/s. With the assistance of TENG, the migration of corrosion inhibitor can be accelerated and the formation of the protective layer becomes faster due to the driving force of electric field. The shielding effect of protective layer in turn improves the cathodic protection of TENG. The immersion experiment and electrochemical measurements including Tafel polarization curves and EIS were taken to evaluate the performance of synergetic anticorrosion system. FESEM and EDS measurements were performed to analyze the morphology and composition of the protective layer and confirm the mechanism of synergetic anticorrosion. This work expands the application of TENG in the anticorrosion field and proposes a new thought of synergetic anticorrosion method
    corecore