15,196 research outputs found
Yang-Yang method for the thermodynamics of one-dimensional multi-component interacting fermions
Using Yang and Yang's particle-hole description, we present a thorough
derivation of the thermodynamic Bethe ansatz equations for a general
fermionic system in one-dimension for both the repulsive and
attractive regimes under the presence of an external magnetic field. These
equations are derived from Sutherland's Bethe ansatz equations by using the
spin-string hypothesis. The Bethe ansatz root patterns for the attractive case
are discussed in detail. The relationship between the various phases of the
magnetic phase diagrams and the external magnetic fields is given for the
attractive case. We also give a quantitative description of the ground state
energies for both strongly repulsive and strongly attractive regimes.Comment: 22 pages, 2 figures, slight improvements, some extra reference
Unified description of pairing, trionic and quarteting states for one-dimensional SU(4) attractive fermions
Paired states, trions and quarteting states in one-dimensional SU(4)
attractive fermions are investigated via exact Bethe ansatz calculations. In
particular, quantum phase transitions are identified and calculated from the
quarteting phase into normal Fermi liquid, trionic states and spin-2 paired
states which belong to the universality class of linear field-dependent
magnetization in the vicinity of critical points. Moreover, unified exact
results for the ground state energy, chemical potentials and complete phase
diagrams for isospin attractive fermions with external fields
are presented. Also identified are the magnetization plateaux of
and , where is the magnetization saturation value. The
universality of finite-size corrections and collective dispersion relations
provides a further test ground for low energy effective field theory.Comment: 13 pages, 4 figure
Specific heat and thermal conductivity of ferromagnetic magnons in Yttrium Iron Garnet
The specific heat and thermal conductivity of the insulating ferrimagnet
YFeO (Yttrium Iron Garnet, YIG) single crystal were measured
down to 50 mK. The ferromagnetic magnon specific heat shows a
characteristic dependence down to 0.77 K. Below 0.77 K, a downward
deviation is observed, which is attributed to the magnetic dipole-dipole
interaction with typical magnitude of 10 eV. The ferromagnetic magnon
thermal conductivity does not show the characteristic
dependence below 0.8 K. To fit the data, both magnetic defect
scattering effect and dipole-dipole interaction are taken into account. These
results complete our understanding of the thermodynamic and thermal transport
properties of the low-lying ferromagnetic magnons.Comment: 5 pages, 5 figure
Universal Tomonaga-Luttinger liquid phases in one-dimensional strongly attractive SU(N) fermionic cold atoms
A simple set of algebraic equations is derived for the exact low-temperature
thermodynamics of one-dimensional multi-component strongly attractive fermionic
atoms with enlarged SU(N) spin symmetry and Zeeman splitting. Universal
multi-component Tomonaga-Luttinger liquid (TLL) phases are thus determined. For
linear Zeeman splitting, the physics of the gapless phase at low temperatures
belongs to the universality class of a two-component asymmetric TLL
corresponding to spin-neutral N-atom composites and spin-(N-1)/2 single atoms.
The equation of states is also obtained to open up the study of multi-component
TLL phases in 1D systems of N-component Fermi gases with population imbalance.Comment: 12 pages, 3 figure
Exactly solvable models and ultracold Fermi gases
Exactly solvable models of ultracold Fermi gases are reviewed via their
thermodynamic Bethe Ansatz solution. Analytical and numerical results are
obtained for the thermodynamics and ground state properties of two- and
three-component one-dimensional attractive fermions with population imbalance.
New results for the universal finite temperature corrections are given for the
two-component model. For the three-component model, numerical solution of the
dressed energy equations confirm that the analytical expressions for the
critical fields and the resulting phase diagrams at zero temperature are highly
accurate in the strong coupling regime. The results provide a precise
description of the quantum phases and universal thermodynamics which are
applicable to experiments with cold fermionic atoms confined to one-dimensional
tubes.Comment: based on an invited talk at Statphys24, Cairns (Australia) 2010. 16
pages, 6 figure
Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2
The in-plane resistivity and thermal conductivity of
FeAs-based superconductor KFeAs single crystal were measured down to 50
mK. We observe non-Fermi-liquid behavior at =
5 T, and the development of a Fermi liquid state with when
further increasing field. This suggests a field-induced quantum critical point,
occurring at the superconducting upper critical field . In zero field
there is a large residual linear term , and the field dependence of
mimics that in d-wave cuprate superconductors. This indicates that
the superconducting gaps in KFeAs have nodes, likely d-wave symmetry.
Such a nodal superconductivity is attributed to the antiferromagnetic spin
fluctuations near the quantum critical point.Comment: 4 pages, 4 figures - replaces arXiv:0909.485
Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation
© 2019 IEEE. We consider the problem of unsupervised domain adaptation in semantic segmentation. The key in this campaign consists in reducing the domain shift, i.e., enforcing the data distributions of the two domains to be similar. A popular strategy is to align the marginal distribution in the feature space through adversarial learning. However, this global alignment strategy does not consider the local category-level feature distribution. A possible consequence of the global movement is that some categories which are originally well aligned between the source and target may be incorrectly mapped. To address this problem, this paper introduces a category-level adversarial network, aiming to enforce local semantic consistency during the trend of global alignment. Our idea is to take a close look at the category-level data distribution and align each class with an adaptive adversarial loss. Specifically, we reduce the weight of the adversarial loss for category-level aligned features while increasing the adversarial force for those poorly aligned. In this process, we decide how well a feature is category-level aligned between source and target by a co-training approach. In two domain adaptation tasks, i.e., GTA5-> Cityscapes and SYNTHIA-> Cityscapes, we validate that the proposed method matches the state of the art in segmentation accuracy
- …