57 research outputs found

    Emission Characteristics of Organic Light-Emitting Diodes and Organic Thin-Films with Planar and Corrugated Structures

    Get PDF
    In this paper, we review the emission characteristics from organic light-emitting diodes (OLEDs) and organic molecular thin films with planar and corrugated structures. In a planar thin film structure, light emission from OLEDs was strongly influenced by the interference effect. With suitable design of microcavity structure and layer thicknesses adjustment, optical characteristics can be engineered to achieve high optical intensity, suitable emission wavelength, and broad viewing angles. To increase the extraction efficiency from OLEDs and organic thin-films, corrugated structure with micro- and nano-scale were applied. Microstructures can effectively redirects the waveguiding light in the substrate outside the device. For nanostructures, it is also possible to couple out the organic and plasmonic modes, not only the substrate mode

    Letter to the Editor: Glioma immunoenvironment

    No full text

    Modulation by Melatonin of the Pathogenesis of Inflammatory Autoimmune Diseases

    Get PDF
    Melatonin is the major secretory product of the pineal gland during the night and has multiple activities including the regulation of circadian and seasonal rhythms, and antioxidant and anti-inflammatory effects. It also possesses the ability to modulate immune responses by regulation of the T helper 1/2 balance and cytokine production. Autoimmune diseases, which result from the activation of immune cells by autoantigens released from normal tissues, affect around 5% of the population. Activation of autoantigen-specific immune cells leads to subsequent damage of target tissues by these activated cells. Melatonin therapy has been investigated in several animal models of autoimmune disease, where it has a beneficial effect in a number of models excepting rheumatoid arthritis, and has been evaluated in clinical autoimmune diseases including rheumatoid arthritis and ulcerative colitis. This review summarizes and highlights the role and the modulatory effects of melatonin in several inflammatory autoimmune diseases including multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes mellitus, and inflammatory bowel disease

    Modulation by Melatonin of the Pathogenesis of Inflammatory Autoimmune Diseases

    Get PDF
    Melatonin is the major secretory product of the pineal gland during the night and has multiple activities including the regulation of circadian and seasonal rhythms, and antioxidant and anti-inflammatory effects. It also possesses the ability to modulate immune responses by regulation of the T helper 1/2 balance and cytokine production. Autoimmune diseases, which result from the activation of immune cells by autoantigens released from normal tissues, affect around 5% of the population. Activation of autoantigen-specific immune cells leads to subsequent damage of target tissues by these activated cells. Melatonin therapy has been investigated in several animal models of autoimmune disease, where it has a beneficial effect in a number of models excepting rheumatoid arthritis, and has been evaluated in clinical autoimmune diseases including rheumatoid arthritis and ulcerative colitis. This review summarizes and highlights the role and the modulatory effects of melatonin in several inflammatory autoimmune diseases including multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes mellitus, and inflammatory bowel disease

    Alpha-Lipoic Acid Inhibits Spontaneous Diabetes and Autoimmune Recurrence in Non-Obese Diabetic Mice by Enhancing Differentiation of Regulatory T Cells and Showed Potential for Use in Cell Therapies for the Treatment of Type 1 Diabetes

    No full text
    Type 1 diabetes (T1D) is caused by the destruction of β cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective treatment for T1D. However, the survival of islet grafts is often disrupted by recurrent autoimmunity. Alpha-lipoic acid (ALA) has been reported to have immunomodulatory effects and, therefore, may have therapeutic potential in the treatment of T1D. In this study, we investigated the therapeutic potential of ALA in autoimmunity inhibition. We treated non-obese diabetic (NOD) mice with spontaneous diabetes and islet-transplantation mice with ALA. The onset of diabetes was decreased and survival of the islet grafts was extended. The populations of Th1 cells decreased, and regulatory T cells (Tregs) increased in ALA-treated mice. The in vitro Treg differentiation was significantly increased by treatment with ALA. The adoptive transfer of ALA-differentiated Tregs into NOD recipients improved the outcome of the islet grafts. Our results showed that in vivo ALA treatment suppressed spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Tregs. Our study also demonstrated the therapeutic potential of ALA in Treg-based cell therapies and islet transplantation used in the treatment of T1D

    Decoy Receptor 3 Promotes Preosteoclast Cell Death via Reactive Oxygen Species-Induced Fas Ligand Expression and the IL-1α/IL-1 Receptor Antagonist Pathway

    No full text
    Purpose. Interleukin-1α (IL-1α) is a potent cytokine that plays a role in inflammatory arthritis and bone loss. Decoy receptor 3 (DCR3) is an immune modulator of monocytes and macrophages. The aim of this study was to investigate the mechanism of DCR3 in IL-1α-induced osteoclastogenesis. Methods. We treated murine macrophages with DCR3 during receptor activator of nuclear factor kappa Β ligand- (RANKL-) plus IL-1α-induced osteoclastogenesis to monitor osteoclast formation by tartrate-resistant acid phosphatase (TRAP) staining. Osteoclast activity was assessed using a pit formation assay. The mechanisms of inhibition were studied by biochemical analyses, including RT-PCR, immunofluorescent staining, flow cytometry, an apoptosis assay, immunoblotting, and ELISA. Results. DCR3 suppresses IL-1α-induced osteoclastogenesis in both primary murine bone marrow-derived macrophages (BMM) and RAW264.7 cells as it inhibits bone resorption. DCR3 induces RANKL-treated osteoclast precursor cells to express IL-1α, secretory IL-1ra (sIL-1ra), intracellular IL-1ra (icIL-1ra), reactive oxygen species (ROS), and Fas ligand and to activate IL-1α-induced interleukin-1 receptor-associated kinase 4 (IRAK4). The suppression of DCR3 during RANKL- or IL-1α-induced osteoclastogenesis may be due to the abundant secretion of IL-1ra, accumulation of ROS, and expression of Fas ligand in apoptotic osteoclast precursor cells. Conclusions. We concluded that there is an inhibitory effect of DCR3 on osteoclastogenesis via ROS accumulation and ROS-induced Fas ligand, IL-1α, and IL-1ra expression. Our results suggested that the upregulation of DCR3 in preosteoclasts might be a therapeutic target in inflammatory IL-1α-induced bone resorption

    Interleukin 26 Induces Macrophage IL-9 Expression in Rheumatoid Arthritis

    No full text
    Rheumatoid arthritis (RA) is an autoimmune disease with chronic inflammation, bone erosion, and joint deformation. Synovial tissue in RA patients is full of proinflammatory cytokines and infiltrated immune cells, such as T help (Th) 9, Th17, macrophages, and osteoclasts. Recent reports emphasized a new member of the interleukin (IL)-10 family, IL-26, an inducer of IL-17A that is overexpressed in RA patients. Our previous works found that IL-26 inhibits osteoclastogenesis and conducts monocyte differentiation toward M1 macrophages. In this study, we aimed to clarify the effect of IL-26 on macrophages linking to Th9 and Th17 in IL-9 and IL-17 expression and downstream signal transduction. Murine and human macrophage cell lines and primary culture cells were used and stimulated by IL26. Cytokines expressions were evaluated by flow cytometry. Signal transduction and transcription factors expression were detected by Western blot and real time-PCR. Our results show that IL-26 and IL-9 colocalized in macrophage in RA synovium. IL-26 directly induces macrophage inflammatory cytokines IL-9 and IL-17A expression. IL-26 increases the IL-9 and IL-17A upstream mechanisms IRF4 and RelB expression. Moreover, the AKT-FoxO1 pathway is also activated by IL-26 in IL-9 and IL-17A expressing macrophage. Blockage of AKT phosphorylation enhances IL-26 stimulating IL-9-producing macrophage cells. In conclusion, our results support that IL-26 promotes IL-9- and IL-17-expressing macrophage and might initiate IL-9- and IL-17-related adaptive immunity in rheumatoid arthritis. Targeting IL-26 may a potential therapeutic strategy for rheumatoid arthritis or other IL-9 plus IL-17 dominant diseases
    • …
    corecore