183 research outputs found

    Bottom-up Design of Three-Dimensional Carbon-Honeycomb with Superb Specific Strength and High Thermal Conductivity

    Get PDF
    Low-dimensional carbon allotropes, from fullerenes, carbon nanotubes, to graphene, have been broadly explored due to their outstanding and special properties. However, there exist significant challenges in retaining such properties of basic building blocks when scaling them up to three-dimensional materials and structures for many technological applications. Here we show theoretically the atomistic structure of a stable three-dimensional carbon honeycomb (C-honeycomb) structure with superb mechanical and thermal properties. A combination of sp(2) bonding in the wall and sp(3) bonding in the triple junction of C-honeycomb is the key to retain stability of C-honeycomb. The specific strength could be the best in structural carbon materials, and this strength remains at,a high level but tunable with different cell sizes. C-honeycomb is also found to have a very high thermal conductivity, for example, &gt;100 W/mK along the axis of the hexagonal cell with a density only similar to 0.4 g/cm(3). Because of the low density and high thermal conductivity, the specific thermal conductivity of C-honeycoMbs is larger than most engineering materials, including metals and high thermal conductivity semiconductors, as well as lightweight CNT arrays and graphene-based nanocomposites. Such high specific strength, high thermal conductivity, and anomalous Poisson&#39;s effect in C-honeycomb render it appealing for the use in various engineering practices.</p

    Bear bile: dilemma of traditional medicinal use and animal protection

    Get PDF
    Bear bile has been used in Traditional Chinese Medicine (TCM) for thousands of years. Modern investigations showed that it has a wide range of pharmacological actions with little toxicological side effect and the pure compounds have been used for curing hepatic and biliary disorders for decades. However, extensive consumption of bear bile made bears endangered species. In the 1980's, bear farming was established in China to extract bear bile from living bears with "Free-dripping Fistula Technique". Bear farming is extremely inhumane and many bears died of illness such as chronic infections and liver cancer. Efforts are now given by non-governmental organizations, mass media and Chinese government to end bear farming ultimately. At the same time, systematic research has to be done to find an alternative for bear bile. In this review, we focused on the literature, laboratory and clinical results related to bear bile and its substitutes or alternative in English and Chinese databases. We examined the substitutes or alternative of bear bile from three aspects: pure compounds derived from bear bile, biles from other animals and herbs from TCM. We then discussed the strategy for stopping the trading of bear bile and issues of bear bile related to potential alternative candidates, existing problems in alternative research and work to be done in the future

    First observation of the decays χcJ→π0π0π0π0

    Get PDF
    We present a study of the P-wave spin-triplet charmonium χ cJ decays (J=0, 1, 2) into π0π0π0π0. The analysis is based on 106×106 ψ⊃′ decays recorded with the BESIII detector at the BEPCII electron positron collider. The decay into the π0π0π0π0 hadronic final state is observed for the first time. We measure the branching fractions B(χ c0→π0π0π0π0)=(3.34±0. 06±0.44)×10⊃-3, B(χ c1→π0π0π0π0) =(0.57±0.03±0.08)×10⊃-3, and B(χ c2→π0π0π0π0)=(1.21±0.05±0.16) ×10⊃-3, where the uncertainties are statistical and systematical, respectively. © 2011 American Physical Society.published_or_final_versio

    Measurement of the matrix element for the decay η′→ηπ +π -

    Get PDF
    The Dalitz plot of η⊃′→ηπ⊃+π⊃- decay is studied using (225.2±2.8)×106 J/ψ events collected with the BESIII detector at the BEPCII e⊃+e⊃- collider. With the largest sample of η⊃′ decays to date, the parameters of the Dalitz plot are determined in a generalized and a linear representation. Also, the branching fraction of J/ψ→γη⊃′ is determined to be (4.84±0.03±0.24)×10⊃-3, where the first error is statistical and the second systematic. © 2011 American Physical Society.published_or_final_versio

    Higher-order multipole amplitude measurement in ψ ′→γχ c2

    Get PDF
    Using 106×106 ψ ′ events collected with the BESIII detector at the BEPCII storage ring, the higher-order multipole amplitudes in the radiative transition ψ ′→γχ c2→γπ +π -/γK +K - are measured. A fit to the χ c2 production and decay angular distributions yields M2=0.046±0. 010±0.013 and E3=0.015±0.008±0.018, where the first errors are statistical and the second systematic. Here M2 denotes the normalized magnetic quadrupole amplitude and E3 the normalized electric octupole amplitude. This measurement shows evidence for the existence of the M2 signal with 4.4σ statistical significance and is consistent with the charm quark having no anomalous magnetic moment. © 2011 American Physical Society.published_or_final_versio

    Study of a00(980)-f0(980) mixing

    Get PDF
    Using samples of 2.25×108 J/ψ events and 1.06×108 ψ ′ events collected with the BES III detector, we study the f 0(980)→a00(980) and a00(980)→f 0(980) transitions in the processes J/ψ→φf 0(980) →φa00(980) and χ c1→π0a00(980)→π0f 0(980), respectively. Evidence for f 0(980)→a00(980) is found with a significance of 3.4σ, while in the case of a00(980)→f 0(980) transition, the significance is 1.9σ. Measurements and upper limits of both branching ratios and mixing intensities are determined. © 2011 American Physical Society.published_or_final_versio

    Determination of the number of J/ψ events with J/ψ → inclusive decays

    Get PDF
    postprin

    Two-photon widths of the χ c0,2 states and helicity analysis for χ c2→γγ

    Get PDF
    Based on a data sample of 106×106 ψ ′ events collected with the BESIII detector, the decays ψ ′→γχ c0,2, χ c0,2→γγ are studied to determine the two-photon widths of the χ c0,2 states. The two-photon decay branching fractions are determined to be B(χ c0→γγ)=(2. 24±0.19±0.12±0.08)×10 -4 and B(χ c2→γγ)=(3.21±0.18±0. 17±0.13)×10 -4. From these, the two-photon widths are determined to be Γ γγ(χ c0)=(2. 33±0.20±0.13±0.17)keV, Γ γγ(χ c2)=(0.63±0.04±0. 04±0.04)keV, and R=Γ γγ(χ c2)/ Γ γγ(χ c0)=0.271±0. 029±0.013±0.027, where the uncertainties are statistical, systematic, and those from the PDG B(ψ ′→γχ c0,2) and Γ(χ c0,2) errors, respectively. The ratio of the two-photon widths for helicity λ=0 and helicity λ=2 components in the decay χ c2→γγ is measured for the first time to be f 0/2=Γγγλ= 0(χ c2)/Γγγλ=2(χ c2)=0. 00±0.02±0.02. © 2012 American Physical Society.published_or_final_versio

    Observation of \chi_{cJ} decaying into the p\bar{p}K^{+}K^{-} final state

    Get PDF
    First measurements of the decays of the three χcJ\chi_{cJ} states to ppˉK+Kp\bar{p}K^{+}K^{-} final states are presented. Intermediate ϕK+K\phi\to K^{+}K^{-} and Λ(1520)pK\Lambda(1520)\to pK^{-} resonance states are observed, and branching fractions for χcJpˉK+Λ(1520)\chi_{cJ}\to \bar{p}K^{+}\Lambda(1520), Λ(1520)Λˉ(1520)\Lambda(1520) \bar{\Lambda}(1520), and ϕppˉ\phi p\bar{p} are reported. We also measure branching fractions for direct χcJppˉK+K\chi_{cJ}\to p\bar{p} K^{+}K^{-} decays. These are first observations of χcJ\chi_{cJ} decays to unstable baryon resonances and provide useful information about the χcJ\chi_{cJ} states. The experiment uses samples of χcJ\chi_{cJ} mesons produced via radiative transitions from 106 million ψ\psi^{\prime} mesons collected in the BESIII detector at the BEPCII e+ee^+e^- collider.Comment: 16 pages, 5 figure

    Evidence for psi' decays into gamma pi^0 and gamma eta

    Get PDF
    The decays psi'->gamma pi^0, gamma eta and gamma eta' are studied using data collected with the BESIII detector at the BEPCII e^+e^- collider. Processes psi'->gamma pi^0 and psi'->gamma eta are observed for the first time with signal significances of 4.6 sigma and 4.3 sigma, respectively. The branching fractions are determined to be: B(psi'->gamma pi^0)=(1.58+-0.40+-0.13)x10^{-6}, B(psi'->gamma eta)=(1.38+-0.48+-0.09)x10^{-6}, and B(psi'->gamma eta')=(126+-3+-8) x 10^{-6}, where the first errors are statistical and the second ones systematic.Comment: 6 pages, 4 figure
    corecore