18,513 research outputs found
An advanced meshless method for time fractional diffusion equation
Recently, because of the new developments in sustainable engineering and renewable energy, which are usually governed by a series of fractional partial differential equations (FPDEs), the numerical modelling and simulation for fractional calculus are attracting more and more attention from researchers. The current dominant numerical method for modeling FPDE is Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings including difficulty in simulation of problems with the complex problem domain and in using irregularly distributed nodes. Because of its distinguished advantages, the meshless method has good potential in simulation of FPDEs. This paper aims to develop an implicit meshless collocation technique for FPDE. The discrete system of FPDEs is obtained by using the meshless shape functions and the meshless collocation formulation. The stability and convergence of this meshless approach are investigated theoretically and numerically. The numerical examples with regular and irregular nodal distributions are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of fractional partial differential equations
Top-N Recommendation on Graphs
Recommender systems play an increasingly important role in online
applications to help users find what they need or prefer. Collaborative
filtering algorithms that generate predictions by analyzing the user-item
rating matrix perform poorly when the matrix is sparse. To alleviate this
problem, this paper proposes a simple recommendation algorithm that fully
exploits the similarity information among users and items and intrinsic
structural information of the user-item matrix. The proposed method constructs
a new representation which preserves affinity and structure information in the
user-item rating matrix and then performs recommendation task. To capture
proximity information about users and items, two graphs are constructed.
Manifold learning idea is used to constrain the new representation to be smooth
on these graphs, so as to enforce users and item proximities. Our model is
formulated as a convex optimization problem, for which we need to solve the
well-known Sylvester equation only. We carry out extensive empirical
evaluations on six benchmark datasets to show the effectiveness of this
approach.Comment: CIKM 201
- …