5 research outputs found

    Trisubstituted Pyridinylimidazoles as Potent Inhibitors of the Clinically Resistant L858R/T790M/C797S EGFR Mutant: Targeting of Both Hydrophobic Regions and the Phosphate Binding Site

    No full text
    Inhibition of the epidermal growth factor receptor represents one of the most promising strategies in the treatment of lung cancer. Acquired resistance compromises the clinical efficacy of EGFR inhibitors during long-term treatment. The recently discovered EGFR-C797S mutation causes resistance against third-generation EGFR inhibitors. Here we present a rational approach based on extending the inhibition profile of a p38 MAP kinase inhibitor toward mutant EGFR inhibition. We used a privileged scaffold with proven cellular potency as well as in vivo efficacy and low toxicity. Guided by molecular modeling, we synthesized and studied the structure–activity relationship of 40 compounds against clinically relevant EGFR mutants. We successfully improved the cellular EGFR inhibition down to the low nanomolar range with covalently binding inhibitors against a gefitinib resistant T790M mutant cell line. We identified additional noncovalent interactions, which allowed us to develop metabolically stable inhibitors with high activities against the osimertinib resistant L858R/T790M/C797S mutant

    Trisubstituted Pyridinylimidazoles as Potent Inhibitors of the Clinically Resistant L858R/T790M/C797S EGFR Mutant: Targeting of Both Hydrophobic Regions and the Phosphate Binding Site

    No full text
    Inhibition of the epidermal growth factor receptor represents one of the most promising strategies in the treatment of lung cancer. Acquired resistance compromises the clinical efficacy of EGFR inhibitors during long-term treatment. The recently discovered EGFR-C797S mutation causes resistance against third-generation EGFR inhibitors. Here we present a rational approach based on extending the inhibition profile of a p38 MAP kinase inhibitor toward mutant EGFR inhibition. We used a privileged scaffold with proven cellular potency as well as in vivo efficacy and low toxicity. Guided by molecular modeling, we synthesized and studied the structure–activity relationship of 40 compounds against clinically relevant EGFR mutants. We successfully improved the cellular EGFR inhibition down to the low nanomolar range with covalently binding inhibitors against a gefitinib resistant T790M mutant cell line. We identified additional noncovalent interactions, which allowed us to develop metabolically stable inhibitors with high activities against the osimertinib resistant L858R/T790M/C797S mutant

    <i>Tetra</i>-Substituted Pyridinylimidazoles As Dual Inhibitors of p38α Mitogen-Activated Protein Kinase and c‑Jun <i>N</i>‑Terminal Kinase 3 for Potential Treatment of Neurodegenerative Diseases

    No full text
    <i>Tetra</i>-substituted imidazoles were designed as dual inhibitors of c-Jun <i>N</i>-terminal kinase (JNK) 3 and p38α mitogen-activated protein (MAP) kinase. A library of 45 derivatives was prepared and evaluated in a kinase activity assay for their ability to inhibit both kinases, JNK3 and p38α MAP kinase. Dual inhibitors with IC<sub>50</sub> values down to the low double-digit nanomolar range at both enzymes were identified. The best balanced dual JNK3/p38α MAP kinase inhibitors are <b>6m</b> (IC<sub>50</sub>: JNK3, 18 nM; p38α, 30 nM) and <b>14d</b> (IC<sub>50</sub>: JNK3, 26 nM; p38α, 34 nM) featuring both excellent solubility and metabolic stability. They may serve as useful tool compounds for preclinical proof-of-principle studies in order to validate the synergistic role of both kinases in the progression of Huntington’s disease

    Targeting the Gatekeeper MET146 of C-Jun N-Terminal Kinase 3 Induces a Bivalent Halogen/Chalcogen Bond

    No full text
    We target the gatekeeper MET146 of c-Jun N-terminal kinase 3 (JNK3) to exemplify the applicability of X···S halogen bonds in molecular design using computational, synthetic, structural and biophysical techniques. In a designed series of aminopyrimidine-based inhibitors, we unexpectedly encounter a plateau of affinity. Compared to their QM-calculated interaction energies, particularly bromine and iodine fail to reach the full potential according to the size of their σ-hole. Instead, mutation of the gatekeeper residue into leucine, alanine, or threonine reveals that the heavier halides can significantly influence selectivity in the human kinome. Thus, we demonstrate that, although the choice of halogen may not always increase affinity, it can still be relevant for inducing selectivity. Determining the crystal structure of the iodine derivative in complex with JNK3 (4X21) reveals an unusual bivalent halogen/chalcogen bond donated by the ligand and the back-pocket residue MET115. Incipient repulsion from the too short halogen bond increases the flexibility of C<sub>ε</sub> of MET146, whereas the rest of the residue fails to adapt being fixed by the chalcogen bond. This effect can be useful to induce selectivity, as the necessary combination of methionine residues only occurs in 9.3% of human kinases, while methionine is the predominant gatekeeper (39%)
    corecore