198 research outputs found

    Tuning the proximity effect in a superconductor-graphene-superconductor junction

    Full text link
    We have tuned in situ the proximity effect in a single graphene layer coupled to two Pt/Ta superconducting electrodes. An annealing current through the device changed the transmission coefficient of the electrode/graphene interface, increasing the probability of multiple Andreev reflections. Repeated annealing steps improved the contact sufficiently for a Josephson current to be induced in graphene.Comment: Accepted for publication in Phys. Rev.

    Microwave response of an NS ring coupled to a superconducting resonator

    Get PDF
    A long phase coherent normal (N) wire between superconductors (S) is characterized by a dense phase dependent Andreev spectrum . We probe this spectrum in a high frequency phase biased configuration, by coupling an NS ring to a multimode superconducting resonator. We detect a dc flux and frequency dependent response whose dissipative and non dissipative components are related by a simple Debye relaxation law with a characteristic time of the order of the diffusion time through the N part of the ring. The flux dependence exhibits h/2eh/2e periodic oscillations with a large harmonics content at temperatures where the Josephson current is purely sinusoidal. This is explained considering that the populations of the Andreev levels are frozen on the time-scale of the experiments.Comment: 5 pages,4 figure

    Geometrical dependence of decoherence by electronic interactions in a GaAs/GaAlAs square network

    Full text link
    We investigate weak localization in metallic networks etched in a two dimensional electron gas between 2525\:mK and 750750\:mK when electron-electron (e-e) interaction is the dominant phase breaking mechanism. We show that, at the highest temperatures, the contributions arising from trajectories that wind around the rings and trajectories that do not are governed by two different length scales. This is achieved by analyzing separately the envelope and the oscillating part of the magnetoconductance. For T0.3T\gtrsim0.3\:K we find \Lphi^\mathrm{env}\propto{T}^{-1/3} for the envelope, and \Lphi^\mathrm{osc}\propto{T}^{-1/2} for the oscillations, in agreement with the prediction for a single ring \cite{LudMir04,TexMon05}. This is the first experimental confirmation of the geometry dependence of decoherence due to e-e interaction.Comment: LaTeX, 5 pages, 4 eps figure

    Magnetic Anisotropy Variations and Non-Equilibrium Tunneling in a Cobalt Nanoparticle

    Full text link
    We present detailed measurements of the discrete electron-tunneling level spectrum within nanometer-scale cobalt particles as a function of magnetic field and gate voltage, in this way probing individual quantum many-body eigenstates inside ferromagnetic samples. Variations among the observed levels indicate that different quantum states within one particle are subject to different magnetic anisotropy energies. Gate-voltage studies demonstrate that the low-energy tunneling spectrum is affected dramatically by the presence of non-equilibrium spin excitations

    Signature of gate-tunable magnetism in graphene grafted with Pt-porphyrins

    Get PDF
    Inducing magnetism in graphene holds great promises, such as controlling the exchange interaction with a gate electrode and generating exotic magnetic phases. Coating graphene with magnetic molecules or atoms has so far mostly lead to decreased graphene mobility. In the present work, we show that Pt-porphyrins adsorbed on graphene lead to an enhanced mobility and to gate-dependent magnetism. We report that porphyrins can be donor or acceptor, depending on graphene s initial doping. The porphyrins transfer charge and ionize around the charged impurities on graphene, decreasing the graphene doping and increasing its mobility. In addition, ionized porphyrins carry a magnetic moment. Using the sensitivity of mesoscopic transport to magnetism, in particular the superconducting proximity effect and conductance fluctuations, we explore the magnetic order induced in graphene by the interacting magnetic moments of the ionized porphyrins. Among the signatures of magnetism, we find two-terminal-magnetoresistance fluctuations with an odd component, a tell-tale sign of time reversal symmetry breaking at zero field, that does not exist in uncoated graphene sample. When graphene is connected to superconducting electrodes, the induced magnetism leads to a gate-voltage-dependent suppression of the supercurrent, modified magnetic interference patterns, and gate-voltage-dependent magnetic hysteresis. The magnetic signatures are greatest for long superconductor graphene superconductor junctions and for samples with the highest initial doping, compatible with a greater number of ionized and thus magnetic porphyrins. Our findings suggest that long-range magnetism is induced through graphene by the ionized porphyrins magnetic moment. This magnetic interaction is controlled by the density of carriers in graphene, a tunability that could be exploited in spintronic applications

    Phonon assisted dynamical Coulomb blockade in a thin suspended graphite sheet

    Full text link
    The differential conductance in a suspended few layered graphene sample is fou nd to exhibit a series of quasi-periodic sharp dips as a function of bias at l ow temperature. We show that they can be understood within a simple model of dyn amical Coulomb blockade where energy exchanges take place between the charge carriers transmitted trough the sample and a dissipative electromagnetic envir onment with a resonant phonon mode strongly coupled to the electrons

    Alteration of superconductivity of suspended carbon nanotubes by deposition of organic molecules

    Full text link
    We have altered the superconductivity of a suspended rope of single walled carbon nanotubes, by coating it with organic polymers. Upon coating, the normal state resistance of the rope changes by less than 20 percent. But superconductivity, which on the bare rope shows up as a substantial resistance decrease below 300 mK, is gradualy suppressed. We correlate this to the suppression of radial breathing modes, measured with Raman Spectroscopy on suspended Single and Double-walled carbon nanotubes. This points to the breathing phonon modes as being responsible for superconductivity in carbon nanotubes
    corecore