25 research outputs found

    Prioritization of fish communities with a view to conservation and restoration on a large scale European basin, the Loire (France)

    Get PDF
    The hierarchical organization of important sites for the conservation or the restoration of fish communities is a great challenge for managers, especially because of financial or time constraints. In this perspective, we developed a methodology, which is easy to implement in different locations. Based on the fish assemblage characteristics of the Loire basin (France), we created a synthetic conservation value index including the rarity, the conservation status and the species origin. The relationship between this new synthetic index and the Fish-Based Index allowed us to establish a classification protocol of the sites along the Loire including fish assemblages to be restored or conserved. Sites presenting disturbed fish assemblages, a low rarity index, few threatened species, and a high proportion of non-native species were considered as important for the restoration of fish biodiversity. These sites were found mainly in areas where the assemblages are typical of the bream zone, e.g. with a higher number of eurytopic and limnophilic species. On the contrary, important sites for conservation were defined as having an important conservation potential (high RI, a lot of threatened species, and few nonnatives fish species) and an undisturbed fish assemblage similar to the expected community if habitats are undisturbed. Important sites for conservation were found in the Loire basin’s medium reaches which host assemblages typical for the grayling and the barbell zones, e.g. with a higher number of rheophilic species. The synthetic conservation value index could be adapted and completed with other criteria according to management priorities and capacities

    Nestedness of Ectoparasite-Vertebrate Host Networks

    Get PDF
    Determining the structure of ectoparasite-host networks will enable disease ecologists to better understand and predict the spread of vector-borne diseases. If these networks have consistent properties, then studying the structure of well-understood networks could lead to extrapolation of these properties to others, including those that support emerging pathogens. Borrowing a quantitative measure of network structure from studies of mutualistic relationships between plants and their pollinators, we analyzed 29 ectoparasite-vertebrate host networks—including three derived from molecular bloodmeal analysis of mosquito feeding patterns—using measures of nestedness to identify non-random interactions among species. We found significant nestedness in ectoparasite-vertebrate host lists for habitats ranging from tropical rainforests to polar environments. These networks showed non-random patterns of nesting, and did not differ significantly from published estimates of nestedness from mutualistic networks. Mutualistic and antagonistic networks appear to be organized similarly, with generalized ectoparasites interacting with hosts that attract many ectoparasites and more specialized ectoparasites usually interacting with these same “generalized” hosts. This finding has implications for understanding the network dynamics of vector-born pathogens. We suggest that nestedness (rather than random ectoparasite-host associations) can allow rapid transfer of pathogens throughout a network, and expand upon such concepts as the dilution effect, bridge vectors, and host switching in the context of nested ectoparasite-vertebrate host networks

    High prevalence anti-Trypanosoma cruzi antibodies, among blood donors in the State of Puebla, a non-endemic area of Mexico

    No full text
    Blood transfusion is the second most common transmission route of Chagas disease in many Latin American countries. In Mexico, the prevalence of Chagas disease and impact of transfusion of Trypanosoma cruzi-contaminated blood is not clear. We determined the seropositivity to T. cruzi in a representative random sample, of 2,140 blood donors (1,423 men and 647 women, aged 19-65 years), from a non-endemic state of almost 5 millions of inhabitants by the indirect hemagglutination (IHA) and enzyme linked immunosorbent assay (ELISA) tests using one autochthonous antigen from T. cruzi parasites, which were genetically characterized like TBAR/ME/1997/RyC-V1 (T. cruzi I) isolated from a Triatoma barberi specimen collected in the same locality. The seropositivity was up to 8.5% and 9% with IHA and ELISA tests, respectively, and up to 7.7% using both tests in common. We found high seroprevalence in a non-endemic area of Mexico, comparable to endemic countries where the disease occurs, e.g. Brazil (0.7%), Bolivia (13.7%) and Argentina (3.5%). The highest values observed in samples from urban areas, associated to continuous rural emigration and the absence of control in blood donors, suggest unsuspected high risk of transmission of T. cruzi, higher than those reported for infections by blood e.g. hepatitis (0.1%) and AIDS (0.1%) in the same region
    corecore