45 research outputs found

    Application of a Diatom Transfer Function to Quantitative Paleoclimatic Reconstruction — A Case Study of Yunlong Lake, Southwest China

    Get PDF
    Although diatom records from lake sediments have been used for quantitative paleoclimatic reconstruction, their validity and sensitivity have rarely been tested rigorously. At Yunlong Lake, an alpine lake in Southwest China, we studied the seasonal succession of diatom assemblages to produce a mean surface water temperature (MSWT) transfer function. In addition, based on the spatial distribution of surface diatom assemblages with water depth, we produced a diatom-water depth (WD) transfer function. Combined with the analysis of diatom assemblages in a sediment core (YL2013-A), changes in surface water temperature and water level over the last ∼100 years were quantitatively reconstructed using the diatom-based transfer functions. Comparison with records of regional meteorology and reservoir water capacity revealed that the diatom-based lake water level reconstruction is a sensitive indicator of short-term fluctuations in precipitation, and it also reflects a long-term stepwise rise in water level caused by the impounding and large-scale extension of the reservoir. In addition, the diatom-inferred MSWT is consistent with the changes in air temperature prior to large-scale human disturbance of the site. However, after the extension of the reservoir, although the regional air temperature continued to increase, the water temperature decreased substantially. This suggests that the large increase in lake water volume in the short term led to a decrease in the average water temperature, which in turn led to the occurrence of a diatom bloom in the cold season. The results demonstrate that diatom transfer functions based on modern observations of the same lake has a high environmental sensitivity and can be used for the quantitative reconstruction of regional climate change. Overall, our findings provide a foundation for the use of lake diatom records for quantitative paleoclimatic reconstruction on various timescales

    Influence of the ratio of planktonic to benthic diatoms on lacustrine organic matter δ13C from Erlongwan maar lake, northeast China

    Get PDF
    Carbon isotope ratio (δ13Corg) values of organic matter in lake sediments are commonly used to reconstruct environmental change, but the factors which influence change are varied and complex. Here we report δ13C values for sediments from Erlongwan maar lake in northeast China. In this record, changes in δ13C cannot be explained by simple changes in aquatic productivity. Instead, values were likely influenced by differences in the ratio between planktonic and benthic algae, as indicated by the remains of diatoms. This is because the variation of δ13Corg in algae from different habitats is controlled by the thickness of the diffusive boundary layer, which is dependent on the turbulence of the water. Compared with benthic algae, which grow in relatively still water, pelagic algae are exposed to greater water movement. This is known to dramatically reduce the thickness of the boundary layer and was found to cause even more severe δ13C depletion. In Erlongwan maar lake, low values were linked to the dominance of planktonic diatoms during the period commonly known as the Medieval Warm Period. Values gradually increased with the onset of the Little Ice Age, which we interpret as being driven by an increase in the proportion of benthic taxa, due to effect of the colder climate. The increase in planktonic diatoms at the end of the Little Ice Age, linked to higher temperature and a reduction in ice cover, resulted in a further decline in δ13Corg
    corecore