41 research outputs found

    Ku70 Is Required for Late B Cell Development and Immunoglobulin Heavy Chain Class Switching

    Get PDF
    Immunoglobulin (Ig) heavy chain (HC) class switch recombination (CSR) is a late B cell process that involves intrachromosomal DNA rearrangement. Ku70 and Ku80 form a DNA end-binding complex required for DNA double strand break repair and V(D)J recombination. Ku70^(−/−) (K70T) mice, like recombination activating gene (RAG)-1– or RAG-2–deficient (R1T or R2T) mice, have impaired B and T cell development at an early progenitor stage, which is thought to result at least in part from defective V(D)J recombination (Gu, Y., K.J. Seidl, G.A. Rathbun, C. Zhu, J.P. Manis, N. van der Stoep, L. Davidson, H.L. Cheng, J.M. Sekiguchi, K. Frank, et al. 1997. Immunity. 7:653–665; Ouyang, H., A. Nussenzweig, A. Kurimasa, V.C. Soares, X. Li, C. Cordon-Cardo, W. Li, N. Cheong, M. Nussenzweig, G. Iliakis, et al. 1997. J. Exp. Med. 186:921–929). Therefore, to examine the potential role of Ku70 in CSR, we generated K70T mice that carry a germline Ig HC locus in which the JH region was replaced with a functionally rearranged VH(D)JH and Ig λ light chain transgene (referred to as K70T/HL mice). Previously, we have shown that B cells from R1T or R2T mice carrying these rearranged Ig genes (R1T/HL or R2T/HL mice) can undergo CSR to IgG isotypes (Lansford, R., J. Manis, E. Sonoda, K. Rajewsky, and F. Alt. 1998. Int. Immunol. 10:325–332). K70T/HL mice had significant numbers of peripheral surface IgM^+ B cells, which generated serum IgM levels similar to those of R2T/HL mice. However, in contrast to R2T/HL mice, K70T/HL mice had no detectable serum IgG isotypes. In vitro culture of K70T/HL B cells with agents that induce CSR in normal or R2T/HL B cells did lead to the induction of germline CH transcripts, indicating that initial signaling pathways for CSR were intact in K70T/HL cells. However, treatment with such agents did not lead to detectable CSR by K70T/HL B cells, and instead, led to cell death within 72 h. We conclude that Ku70 is required for the generation of B cells that have undergone Ig HC class switching. Potential roles for Ku70 in the CSR process are discusse

    Human-induced intensification of terrestrial water cycle in dry regions of the globe

    Get PDF
    Anthropogenic climate change (ACC) strengthens the global terrestrial water cycle (TWC) through increases in annual total precipitation (PRCPTOT) over global land. While the increase in the average global terrestrial PRCPTOT has been attributed to ACC, it is unclear whether this is equally true in dry and wet regions, given the difference in PRCPTOT changes between the two climatic regions. Here, we show the increase in PRCPTOT in dry regions is twice as fast as in wet regions of the globe during 1961–2018 in both observations and simulations. This faster increase is projected to grow with future warming, with an intensified human-induced TWC in the driest regions of the globe. We show this phenomenon can be explained by the faster warming and precipitation response rates as well as the stronger moisture transport in dry regions under ACC. Quantitative detection and attribution results show that the global increase in PRCPTOT can no longer be attributed to ACC if dry regions are excluded. From 1961–2018, the observed PRCPTOT increased by 5.63%~7.39% (2.44%~2.80%) over dry (wet) regions, and as much as 89% (as little as 5%) can be attributed to ACC. The faster ACC-induced TWC in dry regions is likely to have both beneficial and detrimental effects on dry regions of the globe, simultaneously alleviating water scarcity while increasing the risk of major flooding

    Increase in ocean-onto-land droughts and their drivers under anthropogenic climate change

    Get PDF
    Ocean-onto-land droughts (OTLDs)—i.e., droughts originating over the oceans and migrating onto land—are a recently identified phenomenon with severe natural and human impacts. However, the influence of anthropogenic emissions on past and future changes in OTLDs and their underlying mechanisms remain unclear. Here, using precipitation-minus-evaporation deficits to identify global OTLDs, we find OTLDs have intensified due to anthropogenic climate change during the past 60 years. Under a future high-emissions scenario, the OTLDs would become more frequent (+39.68%), persistent (+54.25%), widespread (+448.92%), and severe (+612.78%) globally. Intensified OTLDs are associated with reduced moisture transport driven by subtropical anticyclones in the northern hemisphere and complex circulation patterns in the southern hemisphere. The reduction in moisture transport during OTLDs is mainly caused by the atmospheric thermodynamic responses to human-induced global warming. Our results underscore the importance of improving understanding of this type of drought and adopting climate mitigation measures

    Defective DNA Strand Break Repair Causes Chromosomal Instability and Accelerates Liver Carcinogenesis in Mice

    Get PDF
    Chromosomal instability is a characteristic feature of hepatocellular carcinoma (HCC) but its origin and role in liver carcinogenesis are undefined. We tested whether a defect in the nonhomologous end-joining (NHEJ) DNA repair gene Ku70 was associated with chromosomal abnormalities and enhanced liver carcinogenesis. Male Ku70 NHEJ-deficient (Ku70-/-), heterozygote (Ku70 +/-), and wild-type (WT) mice were injected with diethylnitrosamine (DEN), a liver carcinogen, at age 15 days. Animals were killed at 3, 6, and 9 months for assessment of tumorigenesis and hepatocellular proliferation. For karyotype analysis, primary liver tumor cell cultures were prepared from HCCs arising in Ku70 mice of all genotypes. Compared to WT littermates, Ku70-/- mice injected with DEN displayed accelerated HCC development. Ku70-/- HCCs harbored clonal increases in numerical and structural aberrations of chromosomes 4, 5, 7, 8, 10, 14, and 19, many of which recapitulated the spectrum of equivalent chromosomal abnormalities observed in human HCC. Ku70-/- HCCs showed high proliferative activity with increased cyclin D1 and proliferating cell nuclear antigen expression, Aurora A kinase activity, enhanced ataxia telangiectasia mutated kinase and ubiquitination, and loss of p53 via proteasomal degradation, features which closely resemble those of human HCC. Conclusion: These findings demonstrate that defects in the NHEJ DNA repair pathway may participate in the disruption of cell cycle checkpoints leading to chromosomal instability and accelerated development of HCC

    Estimation of Fracture Size and Probability Density Function by Setting Scanlines in Rectangular Sampling Window

    Get PDF
    Rock masses are very important materials in geotechnical engineering. In engineering rock mass, fracture is the relatively weak part of mechanical strength in rock mass and is the most important factor controlling the deformation, damage, and permeability of rock mass. Therefore, investigating fractures is very important for characterizing rock mass. This paper proposed a new approach by using uniformly equidistant orthogonal scanlines. Within the study context, the solution formula of fracture size is derived by establishing the space intersection model of arbitrary fracture and scanline, rectangular window, and a rectangular box with a rectangular window. Then, fractures were randomly generated in a certain size cube and compared with the traditional Kulatilake trace length integral evaluation method. The study results have shown that the proposed method is more reasonable and accurate. Then, this method was applied to an adit of Songta Hydropower Station. Finally, a new fracture diameter probability density estimation method was proposed, the fracture diameter of the normal distribution was verified, and the parameters of the probability density function obtained by the scanlines method were in agreement with the initial set parameters. In summary, the proposed scanlines method can well estimate the mean value of the fracture diameter and the probability density function of the fracture size

    Amplification of coupled hot-dry extremes over eastern monsoon China

    Get PDF
    High air temperatures and low atmospheric humidity can result in severe disasters such as flash droughts in regions characterized by high humidity (monsoon regions). However, it remains unclear whether responses of hot extremes to warming temperature are amplified on dry days as well as the response of dry extremes on hot days. Here, taking eastern monsoon China (EMC) as a typical monsoon region, we find a faster increase in air temperature on drier summer days, and a faster decrease in atmospheric humidity on hotter days, indicating “hotter days get drier” and “drier days get hotter” (i.e., coupling hotter and drier extremes), especially in southern EMC. The southern EMC is also a hotspot where the coupling hot-dry extremes has become significantly stronger during the past six decades. The stronger hot-dry coupling in southern EMC is associated with anomalies in large-scale circulations, such as reduced total cloud cover, abnormal anticyclones in the upper atmosphere, intense descending motion, and strong moisture divergence over this region. Land-atmosphere feedback enhance the hot-dry coupling in southern EMC by increasing land surface dryness (seen as a decrease in the evaporation fraction). The decreasing evaporation fraction is associated with drying surface soil moisture, controlled by decreases in pre-summer 1-m soil moisture and summer-mean precipitation. Given hot extremes are projected to increase and atmospheric humidity is predicted to decrease in the future, it is very likely that increasing hot-dry days and associated disasters will be witnessed in monsoon regions, which should be mitigated against by adopting adaptive measures

    Slower-decaying tropical cyclones produce heavier precipitation over China

    Get PDF
    The post-landfall decay of tropical cyclones (TC) is often closely linked to the magnitude of damage to the environment, properties, and the loss of human lives. Despite growing interest in how climate change affects TC decay, data uncertainties still prevent a consensus on changes in TC decay rates and related precipitation. Here, after strict data-quality control, we show that the rate of decay of TCs after making landfall in China has significantly slowed down by 45% from 1967 to 2018. We find that, except the warmer sea surface temperature, the eastward shift of TC landfall locations also contributes to the slowdown of TC decay over China. That is TCs making landfall in eastern mainland China (EC) decay slower than that in southern mainland China (SC), and the eastward shift of TCs landfall locations causes more TCs landfalling in EC with slower decay rate. TCs making landfall in EC last longer at sea, carry more moisture upon landfall, and have more favorable dynamic and thermodynamic conditions sustaining them after landfall. Observational evidence shows that the decay of TC-induced precipitation amount and intensity within 48 h of landfall is positively related to the decay rate of landfalling TCs. The significant increase in TC-induced precipitation over the long term, due to the slower decay of landfalling TCs, increases flood risks in China’s coastal areas. Our results highlight evidence of a slowdown in TC decay rates at the regional scale. These findings provide scientific support for the need for better flood management and adaptation strategies in coastal areas under the threat of greater TC-induced precipitation

    SirT1 modulates the estrogen–insulin-like growth factor-1 signaling for postnatal development of mammary gland in mice

    Get PDF
    INTRODUCTION: Estrogen and insulin-like growth factor-1 (IGF-1) play important roles in mammary gland development and breast cancer. SirT1 is a highly conserved protein deacetylase that can regulate the insulin/IGF-1 signaling in lower organisms, as well as a growing number of transcription factors, including NF-κB, in mammalian cells. Whether SirT1 regulates the IGF-1 signaling for mammary gland development and function, however, is not clear. In the present study, this role of SirT1 was examined by studying SirT1-deficient mice. METHODS: SirT1-deficient (SirT1(ko/ko)) mice were generated by crossing a new strain of mice harboring a conditional targeted mutation in the SirT1 gene (SirT1(co/co)) with CMV-Cre transgenic mice. Whole mount and histology analyses, immunofluorescence staining, immunohistochemistry, and western blotting were used to characterize mammary gland development in virgin and pregnant mice. The effect of exogenous estrogen was also examined by subcutaneous implantation of a slow-releasing pellet in the subscapular region. RESULTS: Both male and female SirT1(ko/ko )mice can be fertile despite the growth retardation phenotype. Virgin SirT1(ko/ko )mice displayed impeded ductal morphogenesis, whereas pregnant SirT1(ko/ko )mice manifested lactation failure due to an underdeveloped lobuloalveolar network. Estrogen implantation was sufficient to rescue ductal morphogenesis. Exogenous estrogen reversed the increased basal level of IGF-1 binding protein-1 expression in SirT1(ko/ko )mammary tissues, but not that of IκBα expression, suggesting that increased levels of estrogen enhanced the production of local IGF-1 and rescued ductal morphogenesis. Additionally, TNFα treatment enhanced the level of the newly synthesized IκBα in SirT1(ko/ko )cells. SirT1 deficiency therefore affects the cellular response to multiple extrinsic signals. CONCLUSION: SirT1 modulates the IGF-1 signaling critical for both growth regulation and mammary gland development in mice. SirT1 deficiency deregulates the expression of IGF-1 binding protein-1 and attenuates the effect of IGF-1 signals, including estrogen-stimulated local IGF-1 signaling for the onset of ductal morphogenesis. These findings suggest that the enzymatic activity of SirT1 may influence both normal growth and malignant growth of mammary epithelial cells

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore