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Rock masses are very important materials in geotechnical engineering. In engineering rock mass, fracture is the relatively
weak part of mechanical strength in rock mass and is the most important factor controlling the deformation, damage, and
permeability of rock mass. Therefore, investigating fractures is very important for characterizing rock mass. This paper proposed
a new approach by using uniformly equidistant orthogonal scanlines. Within the study context, the solution formula of fracture
size is derived by establishing the space intersection model of arbitrary fracture and scanline, rectangular window, and a
rectangular box with a rectangular window. Then, fractures were randomly generated in a certain size cube and compared with
the traditional Kulatilake trace length integral evaluation method. The study results have shown that the proposed method is
more reasonable and accurate. Then, this method was applied to an adit of Songta Hydropower Station. Finally, a new fracture
diameter probability density estimation method was proposed, the fracture diameter of the normal distribution was verified,
and the parameters of the probability density function obtained by the scanlines method were in agreement with the initial set
parameters. In summary, the proposed scanlines method can well estimate the mean value of the fracture diameter and the
probability density function of the fracture size.

1. Introduction
Typically, the rock mass has three characteristics caused
by their fractures, anisotropy, pleiotropy, and heteroge‐
neity [1]. Fracture properties can significantly influence
the behavior of the rock mass in many ways, includ‐
ing strength, deformation, stress-strain relation, permeabil‐
ity, and failure. These properties mainly include fracture
orientation, density, size, surface features (such as infill
material, roughness, and fracture opening), and persistence
ratio [2]. Therefore, it is necessary to investigate and analyze
fractures in the rock mass, but in practical rock engineer‐
ing and field survey, only the orientation, trace length,
location, and surface features of fractures can be directly

obtained. Based on this information, a three-dimensional
fracture network (DFN) can be established, which is widely
used in hydraulic, hydropower, mining, and nuclear power
engineering. Indeed, the estimation of fracture size is an
important part for DFN model and is also the main focus of
this paper.

A fracture is a planar two-dimensional geological
surface in three-dimensional space. At present, the actual
shape of fractures in space is still  unknown, and the
actual fracture size cannot be obtained. Robertson [3]
put forward that the fracture length in the strike
direction was basically the same as that in the dip
direction by the field  survey of 9000 fractures in South
African iron mine and highlighted that the fracture was
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a thin disk in space. Later this viewpoint was accepted
and adopted by many scholars [4]. Barton [5] thought
that the spatial shape of fracture was elliptical. Glynn
et al.  presented that it was more reasonable to apply
the Poisson surface as the geometry of the fracture in
space [6, 7]. Some scholars thought that the geometry of
spatial fracture could also be polygons such as rectan‐
gle, parallelogram, diamond, and triangle. However, the
viewpoint that the fracture is a thin disk in space is
widely used and applied as the fundamental assumption.
Currently, the fracture shape is divided into three types:
(1) Fracture orthogonal model, which was first  proposed
by He et al.  [8] in 1995 to calculate fracture spacing
more conveniently. This  model assumed that all fractures
could be divided into three parallel groups. (2) Beaeher
disk model, which was established by Beaeher et al.  in
1978. This  model was later widely used by scholars [9].
The  joint shape in this model is described as a circle,
and the position of the fracture surface is determined by
the spatial coordinates (x,  y,  and z) of the disk’s center.
The  dip and dip angle of the fracture are determined
through the angle of the disk relative to the rectangu‐
lar coordinate system α  and β.  The  size of the fracture
is determined by the radius r  of the disk. (3) Polygo‐
nal model, which was first  presented by Veneziano [10]
in 1978. Veneziano thought that the fracture shape in
space is polygonal, but he did not consider the inter‐
section points when polygonal fractures intersect. Based
on the imperfection of the Veneziano model, Dershowitz
improved the model in 1984 [11]. There  are also some
other fracture models. Zheng et al.  [12] and Guo et
al. [13] proposed the universal elliptical disc model and
applied it to the establishment of the three DFN model
of the actual slope engineering. The  results show that
compared with the disk model and the nonuniversal
elliptical disk model, the universal elliptical disc model
has a better simulation effect  on rock slope, especially for
the modeling process of slender natural fractures. In the
establishment of three DFN model, fractures are usually
considered thin disk or circular fractures whose center
points obey Poisson distribution. This  study regards the
fracture as a thin disk.

In general, fracture size cannot be directly measured,
but it can be indirectly calculated by establishing the
relationship between the three-dimensional fracture size
and the two-dimensional trace length in the sampling
window. Kendall and Moran [14] proposed the relationship
between the probability density function of intersecting
trace length distribution when fracture size was constant
in 1963, but this method assumed that fracture size in space
was constant, which is obviously contrary to engineering
practice. Kulatilake [15] assumed that the center point
of fracture was evenly distributed in space, and fracture
diameter and orientation were independent. Based on this
assumption, Kulatilake presented a method for estimating
fracture disk diameters and probability density functions by
trace length. This method was a more classical method and
was widely accepted and applied by scholars, but it depends
greatly on the accuracy of the measurement and fitting

distribution function of trace length. Hence, its results
were unstable. Song [16] estimated the probability density
function of the fracture diameter based on the endpoints
of the trace. This method was a distribution-free estima‐
tion method, which was suitable for any shape of fractures
such as circles, rectangles, ellipses, and other polygons. Zhu
Hehua proposed a distribution-free method for estimat‐
ing the fracture diameter distribution using moments in
conjunction with the maximum entropy principle. The
method of the maximum entropy principle could achieve
a universal form for the fracture diameter distribution
without any particular form [17]. Gao Mingzhong [18]
presented an estimation method of fracture size using data
sampled from boreholes, assuming that the fracture was
elliptical. The mean fracture size and standard deviation
were calculated by considering the number of intersections
between the fractures and the boreholes.

According to the distribution of all traces in the
rectangular window, Zhang [19] covered the window with
uniform and equidistant orthogonal grids, took the grid
lines as survey lines, estimated the trace length mean value,
verified the new method by randomly generating the trace
length data of fracture, and applied it to specific engineering
practice. At the same time, he proposed a new method
for fitting the trace length probability density function.
In this paper, rectangular windows are also covered by
uniform and equidistant orthogonal grids, and the space
model of intersection between fracture and survey line, the
space model of intersection between fracture and rectangu‐
lar window, and the space model of intersection between
fracture and rectangular window are, respectively, estab‐
lished by applying the principle of probability statistics to
calculate the mean value of fracture diameter. Finally, based
on the assumption that the probability density function of
disk diameter is the same as that of the two-dimensional full
trace length, a new method for estimating the probability
density of disk diameter is proposed.

2. Mathematical Model
In practical rock engineering and field surveys, only the
orientation, trace length, location, and surface features of
fractures can be directly obtained. Among them, trace
length is important for the estimation of fracture size.
There are three widely used methods for measuring the
trace length [20], which can be summarized as follows: (1)
scanline survey by measuring the trace length intersected
with scanlines [21], (2) window sampling by measuring the
trace length within a finite area [22, 23], and (3) circle
sampling by measuring the trace length intersected with a
circle [24]. Most methods have dimension deviation and
truncation error because there are three intersecting states
between trace length and sampling window: (a) both ends
observable, (b) only one end observable, and (c) both ends
censored, as shown in Figure 1. Assume that N0 are the
fractures whose both ends are censored, N1 are the fractures
whose one end is observable and another end is censored,
N2 are the fractures whose both ends are observable, and N
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are the total fractures in the sampling window, then N=N0
+ N1 + N2. We can further calculate R0 = N0/N, R1 = N1/N,
and R2 = N2/N.

The  trace length and size of the fracture diameter
are two different  concepts, but they are closely related.
The  trace length is the length of the intersection line
between the fracture diameter and the natural outcrop
or the artificial  excavation surface, and the size of the
fracture diameter is its extension feature in the three-
dimensional space. Assuming that the fracture diameter
is a thin disk, there is a certain probability relationship
model between the track length and the disk diameter.
Therefore,  the average value and probability distribution
of the disk diameter can be inferred from the track
length and its distribution. Warburton [25] came up
with the idea of estimating the diameter based on the
full trace length of the outcrop and derived the implicit
functional relationship between the full trace length
of the outcrop and the diameter distribution. Priest
and Hudson [26] obtained the relationship between the
average full trace length and the average diameter of the
outcrop surface when the fracture diameter obeys the
negative exponential distribution. Wu [27] suggested that
the average full trace length of the outcrop intersection
and the fracture diameter is the average chord length
of the circular fracture diameter. Based on this, he
proposed a new formula for estimating the diameter of
the fracture diameter using the full trace length of the
outcrop. Zhang and Einstein [28] deduced the calculation
formula of the average full trace length of the outcrop
surface and estimated the average diameter using the
circular statistical window method. Huang [29] estimated
the full trace length of the outcrop surface based on the
half trace length intersected with the survey line and
then estimated the average diameter through the average
full trace length of the outcrop surface, and corrected
the error caused by the truncation value in the process.
Hekmatnejad et al.  [30] estimated the fracture diameter
using the numerical integration method by comparing
measured and calculated values with full track length
as calibration parameters. In addition, Tonon and Chen
[31] derived the average diameter and fracture diame‐
ter distribution for the common probability distribution
form of the full trace length of the outcrop surface.
Zhang and Einstein [32] proposed the polynomial form
of the probability density function for the track length
distribution under the infinite  measuring window and
derived the analytical solution of the corresponding
probability density function for the diameter distribu‐
tion. Based on the fact that the disk center is uni‐
formly distributed in the three-dimensional space, the
spatial model of the intersection of the fracture and
the measuring line, the spatial model of the intersec‐
tion of the fracture and the rectangular window, and
the spatial model of the intersection of the fracture
and the rectangular box with the rectangular window
as a plane are established by applying the principle of
probability statistics. Finally, the average value of the

fracture diameter and the expected value of the fracture
are obtained.

2.1. The Intersection Model of the Fractures and the
Scanline in Space. The  method in this paper assumes
that a fracture in space is a thin disk. Consider that θ
is the dip direction of the fracture, α  is the dip angle
of the fracture, D  is the diameter of the fracture, and n→
is the normal vector of the disk. In this case, there is
a scanline whose length is random. Let l  be the length,
m→  be the direction vector, and αmn  (αmn ∈ 0,90 ) be
the intersecting angle of the scanline and the normal
direction of fracture. If  the fracture intersects with the
given scanline, then the center point of the fracture must
be in the oblique cylinder as shown in Figure 2. Let Vl
be the volume of the oblique cylinder, then Vl  can be
obtained from equation (1) as follows:

(1)Vl=1
4πD2lcosαmn .

Assume that  the center of  the fracture is  in the
three-dimensional  space,  the disk center’s  is  uniformly
distributed,  and the volume density of  the center
distribution is  λ.  Let  f(D)  be the distribution function
of the disk diameter and f(θ,α)  be the distribution
function of  fracture dip direction and angle.  Further‐
more,  assume that  the orientation and size of  the
fracture are independent of  each other.  Let  NL1  be the
expected value of  the number of  fractures obtained from
arbitrary disk diameter and arbitrary fracture orienta‐
tion intersecting with the given scanline.  NL1  can be
expressed as equation (2).

(2)
NL1 = λ∫0

∞∫αl
αα∫θl

θαVLf(D)f(θ,α)dθdαdD
= λ∫0

∞∫αl
αα∫θl

θα 1
4(πD2lcosαmn)f(D)f(θ,α)dθdαdD .

Based on the properties of the probability
density function, the following formulas can be

obtained. Because ∫0

∞f(D)dD = 1,  ∫0

90g(αmn)dαmn = 1,

and ∫αl
αα∫θl

θα
cosαmndθdα = E(cosαmn), then put the above

three formulas into equation (2), NL1 can be obtained from
equation (3).

(3)NL1 = 1
4λπlE(D2)E(cosαmn) .

However, the fracture center is not strictly uniformly
distributed in the actual rock engineering, and the
measured NL1 by setting one scanline has certain contin‐
gency and instability. The single scanline method has an
inevitable occurrence of sampling deviation. Hence, the
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single scanline preferentially intersects the fracture with
a large intersection angle. At the same time, the layout
of the single scanline method selects the place where the
fracture intersects the most. However, this cannot truly
reflect the fracture distribution and the corresponding trace
length. The scanlines method mentioned in this paper is
similar to the gridding of the rectangular window and
can fully reflect the overall distribution characteristics of
the fracture in the window. Therefore, reasonably arrang‐
ing the scanlines is very important, but it is a very com‐
plex task. The scanline layout method involves determining
its number, length, direction, and position. For different
window trace distributions, the method of line layout
should vary. The basic principle of scanlines arrangement is
that the scanlines arranged should reflect the distribution of
all traces in the window as accurately as possible. Generally,
when the window is covered with uniform and equidistant
orthogonal grids, the grid lines are taken as scanlines, so
that the overall distribution of traces in the window on
the two-dimensional plane can be reasonably reflected. The
reasonable number of measuring lines or the density of
the measuring line arrangement is related to the number
of trace lines in the window and the exposure form, as
shown in Figure 3. In this study, it is suggested that the total
number of orthogonal scanlines in the sampling window
should be Nc = 2N2+N1, where N2 is the number of traces
whose both ends are observable, and N1 is the number of
traces whose only one end is observable. This value is a
suggested value because the number of trace endpoints in
the window surface can reflect the denseness of the trace’s

midpoint in the window. Therefore, selecting the number of
measured lines can effectively reflect the overall distribution
of the window traces.

Assume that the average value of intersecting traces
measured by multiple lines with the same length parallel
to the w side is NLw, and the average value of intersecting
traces measured by multiple lines with the same length
parallel to the h side is NLh, then Nlw and Nlh can be
obtained from equations (4) and (5).

(4)NLw =
∑i = 1
Nc NLwiNc = 1

4λπwE D2 E cosαwn ,

(5)NLℎ =
∑i = 1
Nc NLℎiNc = 1

4λπℎE(D2)E(cosαℎn) .

Let NL be the average value of intersecting traces
measured by multiple lines in rectangular sampling, then
Nl can be obtained from equation (6).

(6)
NL = NLw + NLℎ = 1

4λπE D2 [wE cosαwn
+ℎE cosαℎn ] .

2.2. The Intersection Model of the Fractures and the
Rectangular Window in Space. In a rectangular window,αwn is the intersection angle of the disk normal direction
and w side direction, αℎn is the intersection angle of the

Figure 1: The three types of intersecting states between trace length and sampling window can be expressed as a, b, and c.

Figure 2: Schematic diagram of the center area of the intersection of fracture and scanline.
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disk normal direction and h side direction, and αbn is the
intersection angle of the disk and the rectangular window
in normal direction. If the fracture is intersected with the
rectangular window, the center point of the fracture must
be in the finite region as shown in Figure 4. This region
consists of three parts: (1) the top and bottom are the
semioblique columns with the w side as the generatrix, (2)
the right and left are the semioblique columns with the b
side as the generatrix, and (3) the middle area is an oblique
cube. Then, the volume of this region (Vp) can be derived
from equation (7) as

(7)Vp = 1
4πD2(wcosαwn+ℎcosαℎn) + wℎDsinαbn .

In order to make the expression not show the probability
density function of αwn, αℎn, and αbn, this paper adopts the
probability density function of fracture orientation f(θ, α)
instead of integrating so that the integration will not cause a
correlation problem.

Assume that the disk center is uniformly distributed in
the three-dimensional space, λ is the volume density of
the center distribution, f(d) is the distribution function of
the disk diameter size, f(θ, α) is the distribution function
of the fracture dip direction and angle and the orienta‐
tion of fractures independent of fracture size. Accordingly,
the expected value of the fracture number Np is obtained
from the arbitrary disk diameter, and the orientation of
the fracture intersecting with the given scanline can be
expressed as equation (8).

(8)

Np = λ∫0

∞∫αl
αu∫θl

θuVLf D f θ,α dθdαdD
= λ∫0

∞∫αl
αu∫θl

θu
[1

4πD2 wcosαwn+ℎcosαℎn
+wℎDsinαbn]f D f θ,α dθdαdD .

Because

∫0

∞f D dD = 1,∫0

∞Df(D)dD = E D ,∫0

∞D2f(D)dD
= E D2 ,

∫αl
αu∫θl

θudθdα = 1,∫αl
αu∫θl

θu
cosαwndθdαE(cosαwn)

∫αl
αu∫θl

θu
cosαℎndθdα = E(cosαℎn) and

∫αl
αu∫θl

θu
cosαwndθdα = E(sinαbn)

Then, the above equation (8) can be simplified to
equation (9)

(9)Np = 1
4λπE D2 [wE(cosαwn) + ℎE(cosαℎn)]

+ λwℎE D E(sinαbn) .

The result shows that using the fracture orientation data
as an integral variable is more reasonable.

2.3. The Intersection Model of the Fractures and the Cuboid
With the Rectangle Sampling Window in Space. Assume
that there is a rectangular box with the rectangle sampling
window, w, b, and h are the length, width, and height of
the rectangular box, respectively, as shown in Figure 5. If
the fracture whose diameter and normal vector are D and
n→ intersects with the rectangular box, the fracture center
must be located in the volume Vv enclosed by the fracture
center that exactly meets the surface of the cuboid. The
volume Vv consists of three parts: (1) the volume of the
oblique cylinder whose genera traces are w, h, and b, (2)
the rhombic volume with front, side, and top surfaces, and
(3) the volume of the cuboid itself. Then, Vv can be derived
from equation (10).

(10)
Vv = 1

4πD2 wcosαwn+ℎcosαℎn+bcosαbn
+(wℎDsinαbn+wbDsinαℎn+ℎbDsinαwn) + wℎb .

In this paper, the integral range of the fracture size
ranges from 0 to infinity; hence, the volume formed by the
center point of the fracture intersecting with the cubic box
is irrelevant to fracture size, except that when the diameter
of the structural surface is small, according to equation (10),
the volume Vv is close to wℎb. Therefore, equation (10) is
reasonable.

Assume that the disk center is uniformly distributed in
the three-dimensional space, and λ is the volume density
of the center distribution. Similarly, the expected value of
the fracture number Nv is obtained from the arbitrary disk

Figure 3: Schematic diagram of the single line method (a) and the scanlines method (b).
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diameter, and the orientation of the fracture intersect with
the given rectangular window can be expressed as equation
(11).

(11)
Nv = 1

4λπE D2 [wE(cosαwn) + ℎE(cosαℎn)
+ bE(cosαbn)] + λE D wℎE sinαbn
+wbE sinαℎn +ℎbE sinαwn +λwℎb .

2.4. Model Solving When Nv Is Known. Assume that in a
certain space, the disk center is uniformly distributed, and
λ is the volume density of the center distribution. If the
number of fractures that intersect with a given rectangular
box (Nv), the number of fractures that intersect with a
given rectangular sampling window (Np) and the number of
fractures that intersect with a given line (Nl) are all known,
then, the following equation (12) can be obtained using
equations (6), (9), and (11).

(12)
λ = 4NlC0E(D2)

= 4NpA1E(D2) + 4A2E(D)

= 4NvB1E(D2) + B2E(D) + 4wℎb .

In equation (12),

A1 = π[wE cosαwn +ℎE(cosαℎn)],

A2 = wℎE(sinαbn),
B1 = π[wE cosαwn +ℎE cosαℎn +bE(cosαbn)],
B2 = wℎE sinαbn +wbE sinαℎn +ℎbE(sinαwn),

C0 = πwE cosαwn +πℎE(cosαℎn),
Equations (13) and (14) can be obtained from equation

(12) after derivation and arrangement.

(13)E D2 = 4wℎbNlA2NvA2C0 − NlA2B1 − NpB2C0 + NlA1B2
,

(14)E D = wℎb(NpC0−NlA1)NvA2C0 − NlA2B1 − NpB2C0 + NlA1B2
.

The diameter of the fractured disk can be obtained from
equation (14) when Nv is known.

2.5. Model Solving When Nv Is Unknown. Indeed, it is
very difficult to obtain Nv in practical rock engineering.
Therefore it is necessary to estimate the value of Nv
accurately and effectively to make the average diameter
estimation method proposed in this paper applicable to
practical rock engineering. In practical rock engineering,
the fracture properties intersected with rectangular window
is easily understood. Figure 6 is the top view of the center
area of the intersection of cuboid box and fractures. Because

Figure 4: It is the schematic of the region of the fracture center point when the fracture is intersected with a rectangular window.

Figure 5: Schematic of the fracture center point region when the fracture is intersected with a rectangular box.
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the fracture center is assumed to be evenly distributed in
three-dimensional space, therefore, when the rectangular
plane is parallel to a rectangular window in a cuboid, the
expected value of the intersecting fracture of the rectangular
plane is the same as the number of trace lines seen in the
window. For the fracture whose average diameter is E(D)
and the angle expectation in the direction of b is E(sinαbn),
when the fracture exactly intersects with the two rectangu‐
lar planes in the direction of b, then the distance between
the two rectangular plane is E(D)E(sinαbn). The center
volume (Vv) of the fracture intersected with the cuboid
box can be equivalent to the center volume of fracture
planes intersecting with the rectangular window, where nb=bE(D)E(sinαbn)+1. Nevertheless, such equivalence does not

consider the void volume caused by replacing the volume
of the trapezoid with the oblique cylinder volume in the
direction of the w-side of the top and bottom sides, the
h-side of the left and right sides, and the b-side of the
front and behind sides. The void in Figure 6 is the projec‐
tion of the gap in the direction of the h-side of the left
and right sides on the horizontal plane. The number of
fracture centers in the gap between the w and h edges can
be estimated from Nlw and Nlh measured on the window
surface. Accordingly, the number of fracture centers in the
direction of w in the top and bottom of the gap is nw, wherenw = bE D E sinαbn 4 − π

2π E(cosαwn)Nlw. The number of

fracture centers in the direction of h on right and left of
the gap is nh, where

Assume that the number of fracture centers in the b-side
gap is Nb. Hence, Nv can be derived from equation (15):

(15)
Nv = b + E D E sinαbnE D E sinαbn Np + bE D E sinαbn
4 − π

2π 2E cosαwn Nlw+2E cosαℎn Nlℎ + Nb .

In this study, equation (16) is recommended as the
estimation equation of Nv value because the Nb value on
the b-side cannot be obtained from in the window plane.
Thus equation (15) can be simplified to derive equation (16)
as follows:

(16)
Nv ≈ b + E D E sinαbnE D E sinαbn Np
+ bE D E sinαbn 4 − π

2π 2Nlw+2Nlℎ .

Because Nl = Nlw + Nlℎ, equation (16) can be simplified
as follows:

(17)Nv ≈ b + E D E sinαbnE D E sinαbn Np + bE D E sinαbn 4 − ππ Nl .

In general, equations (12) and (17) can be used to
obtain the estimated formula for the average diameter of
the fracture when Nv is unknown as follows:

(18)

E D2 =
(4πA2C0bNp+16A2C0bNl−4πA2C0bNl−4πE sinαbnC0wℎbNp+4πE sinαbn A1wℎbNl)A2NlπE sinαbn (C0Np − A1Nl)(A2B1Nl

+B2C0Np − A1B2Nl − A2C0Np)

.

(19)

E D =πA2C0bNp+4A2C0bNl − πA2C0bNl − πE sinαbnC0wℎbNp + πE sinαbn A1wℎbNlπE sinαbn (A2B1Nl + B2C0Np − A1B2Nl − A2C0Np) .

Equations (18) and (19) are the fracture diameter
estimation formulas for the unknown Nv. In order to fully
reflect the distribution of the fractures in space by the
fractures in the rectangular box, the value of b in equations
(18) and (19) should be taken as the length of the larger
rectangular window’s side.

3. Application of Mathematical Model
3.1. Application to a Simulated Case. Randomly generate
20,000 fractures in a 100 × 100 × 100 m cube, with an
average dip direction of 200° and an average dip angle of
55°. A small cube of 40 × 40 × 40 m is placed at the center
of the cube to avoid the edge affect. Figure 7 indicates the
fracture surface intersecting with this small cube, where
the number of fracture surfaces is Nv = 780, and one cube
surface is considered abcd. The trace of the visible window
plane is depicted in Figure 8, where Np = 110, R0 = 0.0091,
R1 = 0.3, R2 = 0.6909, and Nc = 2N2 + N1 = 185. Therefore,
by arranging 185 sets of orthogonal survey lines within
the rectangular window, the estimated result of the fracture
surface diameter of the new method can be obtained. The
real fracture diameter situation, the new method’s calcula‐
tion result, and the calculation result of the Kulatilake trace
length integral fracture diameter estimation approach are
compared in Table 1.

The data comparison in Table 1 indicates that the new
method is more precise in estimating the mean value of
the structural surface diameter, the mean square diameter,
and the Nv value. Therefore, the proposed approach for
estimating the average diameter of the fracture in this paper
is accurate and effective.

3.2. Application to Practical Rock Engineering. The new
fracture diameter probability estimation method is applied
to estimate the average fracture diameter of a dominant
group in the Songta Hydropower Station. The site survey of
an adit of Songta Hydropower Station is shown in Figure
9. The dominant group has a total of 58 structural surfa‐
ces, with an average inclination of 351.6° and 82.75°. The
window for statistical traces in the flat cave is vertical at

Lithosphere 7

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2023/4448590/6009813/4448590.pdf
by guest
on 08 January 2024



Figure 6: Top view of the central area of the intersecting fracture of the box.

Figure 7: Distribution of fractures intersecting with a 40 × 40 × 40 m cube.

Figure 8: Representation of window plane trace distribution.
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54 m long and 2 m high and runs north to south. Figure 10
illustrates the measured window trace.

Figure 8 reveals that R0 = 0.0517, R1 = 0.4138, and R2
= 0.5345 and the total number of survey lines arranged in
the window Nc = 2N2+N1 = 86; the average trace length of
the observation is 1.1899 m, and the average trace length
of multiple traces is applied. The average value of the trace
length calculated by the estimation method is 2.5541 m.
Using Kulatilake’s trace length integration method, the
average diameter of the structural surface is 2.66 m, and the
average diameter squared is 7.92 m2. The average diameter
of the fracture is 2.9662 m, and the average square of the
diameter is 13.2462 m2 utilizing the new approach.

3.3. Estimation of the Probability Density Function of Disk
Diameter. The expected value of disk diameter and the
square of disk diameter can be obtained from equations
(18) and (19) . In addition, the probability density function
of the two-dimensional full trace can be determined by the
estimation method of the mean trace length presented by
Zhang [17]. The above conditions are unavailable when the
traditional Kulatilake approach estimates the disk diameter
probability density function. Based on these conditions,
this paper assumes that the form of the probability density
function of the disk diameter and the two-dimensional full
trace is identical and then presents a new disk diameter
probability density estimation method.

Since the expected value of disk diameter and the square
of disk diameter are known, equation (20) can be descri‐
bed according to the variance definition of the probability
density function.

(20)D X = E X2 − E X 2,

where D(X) is the variance of fracture disk diameter,
E(X2) is the expected value of fracture disk diameter, and
[E(X)]2 is the expected value of the square of disk diameter.

Then based on the known form of the probability
density function of the disk diameter, the expected value,
and variance of the diameter, the parameters of the disk
probability density function can be precisely estimated.

In order to verify the above theory, 20,000 disks are
randomly generated in a three-dimensional space of 100 ×
100 × 100 m, and their diameters are subject to a lognormal
distribution. The average diameter is 10 m, and the variance
is 10 m2. The two parameters of the lognormal distribution
are a and b. Parameter a is 2.2549 and b is 0.0953. The

study area consists of a 40 × 40 × 40 m cubic in the center
of the area to avoid the edge effect. One face of the cube
is considered a visible window, and Figure 11 depicts the
window trace distribution.

The window contains 192 traces, in which R0 = 0.0313,
R1 = 0.4844, and R2 = 0.4844, the actual trace length is
8.3613 m, the result of applying the Kulatilake trace length
estimation method is 8.1712 m, and the finding of using the
scanlines approach is 8.1947 m; the scanlines method yields
a more accurate result. By employing the scanlines method
to estimate the trace length probability density function, the
actual, estimated, and observed trace frequency bar charts
are depicted in Figures 12–14. The actual, estimated, and
observed trace length probability density curve can be fitted
based on the value of trace length probability density in
different conditions as shown in Figure 15. Table 2 lists
the actual, estimated, and observed trace length probability
density curve parameters.

Figure 15 and Table 2 indicate that the estimated and
actual trace length curves are close to each other, regardless
of the curve shape and the function parameters, and the
fitting function is a lognormal distribution function.

The scanlines disk diameter estimation method produces
an average disk diameter of 9.4 m and a diameter square
of 98.3 m2. Based on equation (20), the diameter variance
can be obtained as 9.94 m2. On the assumption that the
disk diameter and the trace length of fracture have the same
type of probability density function, the disk diameter of
the fracture also obeys the lognormal distribution and has
the property of lognormal distribution, as demonstrated by
equations (21) and (22).

(21)a = ln E X − 1
2ln 1 + D(X)E X 2 ,

(22)b = ln 1 + D(X)E X 2 ,

where a and b are the parameters of the lognormal
distribution function, E(X) is the expected value of disk
diameter, the value of E(X) is 9.4 m, D(X) is the variance
expected value of disk diameter, and the value of D(X) is
9.94 m.

Therefore, the equations (21) and (22) can be uti‐
lized to determine the parameter values of the lognormal

Table 1: The calculation results of the new method, the comparison between the Kulatilake trace length integration method, and the actual
value m2.

Truth value

Average diameter (m) The square of the average diameter (m2) Nv

5.0104 33.3252 780

Scanlines method Calculation results 5.2841 30.3138 797
Error rate (%) 5.18 % 9.93 % 2.1 %

Kulatilake method Calculation results 4.3870 20.0253 -
Error rate (%) 14.21 % 66.42 % -
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distribution governed by the disk diameter. In the simula‐
tion, the parameter a is set to 2.2549, while the parameter
a is computed to be 2.1874. The parameter b set dur‐
ing simulation is 0.0953, while the parameter b estima‐
ted through calculation is 0.1066. It can be seen that
the estimated parameters are more consistent with the
parameters set during the simulation.

Using the proposed method in this paper to estimate
the fracture disk diameter is applicable not only in the case
that the probability density function of the observed trace
length of fracture in the example of this paper obeys the

lognormal distribution but also in the situation that the
probability density function of the observed trace length
of fracture follows other probability density functions [33].
This is due to the paper’s assumption that the probability
density function of the fracture disk diameter and trace
length are identical. Therefore, as long as the probability
density function of the observed trace length of fracture is
obtained, then using equations (18) and (19), the expected
value of disk diameter and the square of disk diameter can
be obtained, and the variance of the disk diameter can be
obtained by substituting equation (20). Finally, based on

Figure 9: Site survey map of an adit of Songta Hydropower Station.

Figure 10: The measured window trace.

Figure 11: The trace distribution of visible window.
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the parameter calculation formulas corresponding to the
various functions in Table 3, it is possible to determine
the parameters of the probability density function of the
fracture disk that corresponds to various density functions.
The specific calculation process is illustrated in Figure 16.

4. Conclusion
This paper proposes a new method for estimating the disk
diameter of the fracture. Based on the fact that the center
of the disk is uniformly distributed in the three-dimensional

space, the space intersection model of arbitrary fracture
and scanline, rectangular window and a rectangular box
with a rectangular window is derived using the principle of
probability statistics. The expected value of disk diameter
and the square of disk diameter can be calculated utilizing
equations (18) and (19). This paper presents a new disk
diameter probability density estimation method. Several
conclusions can be drawn from this paper:

(1) The model’s solution determines the expected value
of the fracture diameter and its square. However, the

Figure 12: The frequency histogram of actual track length.

Figure 13: The frequency histogram of estimated track length.
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number of fractures intersecting the box (Nv) is used
in the solution process. If the actual project can
effectively obtain the Nv value, equations (18) and
(19) can be utilized to solve the problem.

(2) If the Nv value is difficult to obtain in the actual
project, an effective and reasonable estimate of the
Nv value is required. In this paper, the estimation

formula of Nv value is deduced using window
intersection traces. Furthermore, under the
condition that Nv can not be obtained, a reasonable
estimation of the average diameter of the fracture
can be established, which extends the application
range of the proposed method.

Figure 14: The frequency histogram of observed track length.

Figure 15: The probability density curves of actual, estimated, and observed trace length.

Table 2: Statistical table of the actual, estimated, and observed trace length probability density curve parameters.

Method The actual trace length fitting curve The estimated trace length fitting curve The observed trace length fitting curve

Parameter a 2.058 2.058 1.956
Parameter b 0.3145 0.3192 0.2931
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(3) Randomly generated fracture data and engineering
examples are applied to test the proposed approach
and compared with the traditional Kulatilake track
length integral evaluation method. The results
showed that this technique reasonably estimates the
average fracture diameter.

(4) The disk probability density function parameters are
precisely estimated based on the known probability
density function of the disk diameter, the expected
diameter, and the diameter variance.

The  traditional  Kulatilake uses the concepts of
conditional  probability and geometric probability to
establish the relationship between the probability density
of trace length and the probability density of  frac‐
ture diameter.  The  given numerical  solution method
can obtain fracture diameter distribution through the
probability density function with different  trace lengths.
Therefore,  it  is  very important to obtain accurate trace
length data.  The  traditional  Kulatilake uses the single-
line method to calculate the trace length.  The  single-
line method inevitably has the occurrence sampling
deviation,  that  is,  the survey line preferentially  intersects
the fracture with a relatively large intersection angle

Table 3: Parameters calculation table for different density functions.

Density function Expression Parameter calculation formula

Normal distribution f x = 1
2πσe− x − μ 2

2σ2
μ = E(X)μ=E X σ2=D X σ2 = D(X)

Lognormal distribution f x = 1x 2πbe− ln x − a 2

2b ① b = ln 1 + D XE2(X)
Gamma distribution f x = x α − 1 λαe −λx

Γ α α = E2(X)D x α= E2(X)
D(x)

λ = E(X)D X λ= E(X)
D(X)

Index distribution f x = λe−λx λ = 1E(X)λ= 1
E(X)

—

Rayleigh distribution f x = xσ2e− x2

2σ2 σ = E(X) 2π —

Evenly distribution f x = 1b − a ② ③

Beta distribution f x = x(α − 1)(1 − x)(β − 1)B(α, β)
④ ⑤

① a = ln(E X ) − 1
2 ln 1 + D XE X 2 , ② a = E X − 3D X , ③ b = E X + 3D(X), ④ α = E2(X)(1 − E(X))D(X) − E(X), and ⑤

β = E2(X)(1 − E(X))2E(X)D(X) + E(X) − 1.

Figure 16: The technical flow chart of finding the mean value of disk diameter and density function.
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with it.  Meanwhile,  in the single-line method,  because
the probability of  intersection between the survey line
and the disk decreases with the reduction of  the disk
diameter,  most of  the small  fracture diameter do not
cut the sampling window. Thus,  the average trace length
is  only those fractures surfaces with large diameter
and intersecting with the sampling surface.  Therefore,
the error of  the fracture diameter obtained is  large.
The  multiline method can obtain a more comprehen‐
sive intersection of  the line and the trace length,  so it
can obtain a more accurate trace length and fracture
diameter.  The  method proposed in this  paper can well
estimate the mean value of  fracture diameter and is  a
generalized method for estimating the average fracture
diameter in actual  rock mass engineering.

In summary, the proposed method in this research uses
the principle of probability statistics and can estimate the
average fracture diameter with reasonable accuracy. It is a
generalized approach for predicting the mean fracture disk
diameter.

When the number of fractures intersecting the rectan‐
gular box Nv is unknown, this research approximates
this statistic in the theoretical derivation of the pro‐
posed method in this research for calculating the fracture
disk diameter. In the future, more effective and accurate
methods can be used to calculate the value of Nv, which can
also be obtained through field investigation.
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