8 research outputs found

    Strain-restricted transfer of ferromagnetic electrodes for constructing reproducibly superior-quality spintronic devices

    Get PDF
    Spintronic device is the fundamental platform for spin-related academic and practical studies. However, conventional techniques with energetic deposition or boorish transfer of ferromagnetic metal inevitably introduce uncontrollable damage and undesired contamination in various spin-transport-channel materials, leading to partially attenuated and widely distributed spintronic device performances. These issues will eventually confuse the conclusions of academic studies and limit the practical applications of spintronics. Here we propose a polymer-assistant strain-restricted transfer technique that allows perfectly transferring the pre-patterned ferromagnetic electrodes onto channel materials without any damage and change on the properties of magnetism, interface, and channel. This technique is found productive for pursuing superior-quality spintronic devices with high controllability and reproducibility. It can also apply to various-kind (organic, inorganic, organic-inorganic hybrid, or carbon-based) and diverse-morphology (smooth, rough, even discontinuous) channel materials. This technique can be very useful for reliable device construction and will facilitate the technological transition of spintronic study

    Spintronic study based on molecular spin valves

    No full text

    Emerging Spintronic Materials and Functionalities

    No full text
    The explosive growth of the information era has put forward urgent requirements for ultra-high-speed and extremely efficient computations. In direct contrary to charge-based computations, spintronics aims to use spins as information carriers for data storage, transmission, and decoding, to help fully realize electronic device miniaturization and high integration for next-generation computing technologies. Currently, many novel spintronic materials have been developed with unique properties and multi-functionalities, including organic semiconductors (OSCs), organic-inorganic hybrid perovskites (OIHPs), and two-dimensional materials (2DMs). These materials are useful to fulfil the demand for developing diverse and advanced spintronic devices. Herein, we systematically reviewed these promising materials for advanced spintronic applications. Due to the distinct chemical and physical structures of OSCs, OIHPs, and 2DMs, their spintronic properties (spin transport and spin manipulation) were discussed separately. In addition, some multifunctionalities due to photoelectric and chiral-induced spin selectivity (CISS) were overviewed, including the spin-filter effect, spin-photovoltaics, spin-light emitting devices, and spin-transistor functions. Subsequently, we presented challenges and future perspectives of using these multifunctional materials for the development of advanced spintronics

    Strain-restricted transfer of ferromagnetic electrodes for constructing reproducibly superior-quality spintronic devices

    No full text
    Abstract Spintronic device is the fundamental platform for spin-related academic and practical studies. However, conventional techniques with energetic deposition or boorish transfer of ferromagnetic metal inevitably introduce uncontrollable damage and undesired contamination in various spin-transport-channel materials, leading to partially attenuated and widely distributed spintronic device performances. These issues will eventually confuse the conclusions of academic studies and limit the practical applications of spintronics. Here we propose a polymer-assistant strain-restricted transfer technique that allows perfectly transferring the pre-patterned ferromagnetic electrodes onto channel materials without any damage and change on the properties of magnetism, interface, and channel. This technique is found productive for pursuing superior-quality spintronic devices with high controllability and reproducibility. It can also apply to various-kind (organic, inorganic, organic-inorganic hybrid, or carbon-based) and diverse-morphology (smooth, rough, even discontinuous) channel materials. This technique can be very useful for reliable device construction and will facilitate the technological transition of spintronic study
    corecore