297 research outputs found

    Mode Interferences of VLF Waves in the Presence of an Anisotropic Terrestrial Waveguide

    Get PDF
    It is known that the very low frequency (VLF) signals propagating at long distances over a terrestrial waveguide will experience a diurnal interference across the sunrise and sunset transitions. Early studies indicated that cascaded terrestrial waveguides can be applied to investigate the cycle-clip behaviors of amplitude and phase for VLF waves, with an abrupt effective height change by 20 km to represent the night and day transitions. Based on the knowledge, this chapter starts with some basic concepts on VLF wave propagation in the presence of an anisotropic terrestrial waveguide. Then, by performing the method of field matching at the discontinuous junctions, the coefficients of transmitted and scattered vectors are resulted from two derived matrix equations. Finally, the synthetic fields are calculated to simulate the VLF waves, which are subjected to an oblique geomagnetic field during long-distance propagation. The purpose of the present chapter is to illustrate the disturbing nature during sunrise and sunset for the VLF waves with periodic variations in amplitudes interfered by multimodes over long propagation paths

    Restarted Hessenberg method for solving shifted nonsymmetric linear systems

    Get PDF
    It is known that the restarted full orthogonalization method (FOM) outperforms the restarted generalized minimum residual (GMRES) method in several circumstances for solving shifted linear systems when the shifts are handled simultaneously. Many variants of them have been proposed to enhance their performance. We show that another restarted method, the restarted Hessenberg method [M. Heyouni, M\'ethode de Hessenberg G\'en\'eralis\'ee et Applications, Ph.D. Thesis, Universit\'e des Sciences et Technologies de Lille, France, 1996] based on Hessenberg procedure, can effectively be employed, which can provide accelerating convergence rate with respect to the number of restarts. Theoretical analysis shows that the new residual of shifted restarted Hessenberg method is still collinear with each other. In these cases where the proposed algorithm needs less enough CPU time elapsed to converge than the earlier established restarted shifted FOM, weighted restarted shifted FOM, and some other popular shifted iterative solvers based on the short-term vector recurrence, as shown via extensive numerical experiments involving the recent popular applications of handling the time fractional differential equations.Comment: 19 pages, 7 tables. Some corrections for updating the reference

    Efficient variants of the CMRH method for solving a sequence of multi-shifted non-Hermitian linear systems simultaneously

    Get PDF
    Multi-shifted linear systems with non-Hermitian coefficient matrices arise in numerical solutions of time-dependent partial/fractional differential equations (PDEs/FDEs), in control theory, PageRank problems, and other research fields. We derive efficient variants of the restarted Changing Minimal Residual method based on the cost-effective Hessenberg procedure (CMRH) for this problem class. Then, we introduce a flexible variant of the algorithm that allows to use variable preconditioning at each iteration to further accelerate the convergence of shifted CMRH. We analyse the performance of the new class of methods in the numerical solution of PDEs and FDEs, also against other multi-shifted Krylov subspace methods.Comment: Techn. Rep., Univ. of Groningen, 34 pages. 11 Tables, 2 Figs. This manuscript was submitted to a journal at 20 Jun. 2016. Updated version-1: 31 pages, 10 tables, 2 figs. The manuscript was resubmitted to the journal at 9 Jun. 2018. Updated version-2: 29 pages, 10 tables, 2 figs. Make it concise. Updated version-3: 27 pages, 10 tables, 2 figs. Updated version-4: 28 pages, 10 tables, 2 fig

    Engineering Donor-Acceptor Conjugated Polymers for High-Performance and Fast-Response Organic Electrochemical Transistors

    Get PDF
    To date, high-performance organic electrochemical transistors (OECTs) have mostly been based on polythiophene systems. Donor–acceptor (D–A) conjugated polymers are expected to be promising materials for OECTs owing to their high mobility and comparatively low crystallinity (good for ion diffusion). However, the OECT performance of D–A polymers lags far behind that of the polythiophenes. Here we synergistically engineered the backbone and side chain of a series of diketopyrrolopyrrole (DPP)-based D–A polymers and found that redox potential, molecular weight, solution processability, and film microstructures all have a severe impact on their performance. After systematic engineering, P(bgDPP-MeOT2) exhibited the best figure-of-merit (μC*) of 225 F cm−1 V−1 s−1, amongst the highest performance of the reported D–A polymers. Besides, the DPP polymers exhibited high hole mobility of over 1.6 cm2 V−1 s−1, leading to fast response OECTs with a record low turn-off response time of 30 μs. The polymer also exhibited good operation stability with a current retention of 98.8% over 700 electrochemical switching cycles. This work reveals the complexity and systematicness in the development of D–A polymer based high-performance OECTs

    Cbfa2 is Required for the Formation of Intra-Aortic Hematopoietic Clusters

    Get PDF
    Cbfa2 (AML1) encodes the DNA-binding subunit of a transcription factor in the small family of core-binding factors (CBFs). Cbfa2 is required for the differentiation of all definitive hematopoietic cells, but not for primitive erythropoiesis. Here we show that Cbfa2 is expressed in definitive hematopoietic progenitor cells, and in endothelial cells in sites from which these hematopoietic cells are thought to emerge. Endothelial cells expressing Cbfa2 are in the yolk sac, the vitelline and umbilical arteries, and in the ventral aspect of the dorsal aorta in the aorta/genital ridge/mesonephros (AGM) region. Endothelial cells lining the dorsal aspect of the aorta, and elsewhere in the embryo, do not express Cbfa2. Cbfa2 appears to be required for maintenance of Cbfa2 expression in the endothelium, and for the formation of intra-aortic hematopoietic clusters from the endothelium

    Profiling Y561-Dependent and -Independent Substrates of CSF-1R in Epithelial Cells

    Get PDF
    Receptor tyrosine kinases (RTKs) activate multiple downstream cytosolic tyrosine kinases following ligand stimulation. SRC family kinases (SFKs), which are recruited to activated RTKs through SH2 domain interactions with RTK autophosphorylation sites, are targets of many subfamilies of RTKs. To date, there has not been a systematic analysis of the downstream substrates of such receptor-activated SFKs. Here, we conducted quantitative mass spectrometry utilizing stable isotope labeling (SILAC) analysis to profile candidate SRC-substrates induced by the CSF-1R tyrosine kinase by comparing the phosphotyrosine-containing peptides from cells expressing either CSF-1R or a mutant form of this RTK that is unable to bind to SFKs. This analysis identified previously uncharacterized changes in tyrosine phosphorylation induced by CSF-1R in mammary epithelial cells as well as a set of candidate substrates dependent on SRC recruitment to CSF-1R. Many of these candidates may be direct SRC targets as the amino acids flanking the phosphorylation sites in these proteins are similar to known SRC kinase phosphorylation motifs. The putative SRC-dependent proteins include known SRC substrates as well as previously unrecognized SRC targets. The collection of substrates includes proteins involved in multiple cellular processes including cell-cell adhesion, endocytosis, and signal transduction. Analyses of phosphoproteomic data from breast and lung cancer patient samples identified a subset of the SRC-dependent phosphorylation sites as being strongly correlated with SRC activation, which represent candidate markers of SRC activation downstream of receptor tyrosine kinases in human tumors. In summary, our data reveal quantitative site-specific changes in tyrosine phosphorylation induced by CSF-1R activation in epithelial cells and identify many candidate SRC-dependent substrates phosphorylated downstream of an RTK

    High-Mobility Semiconducting Polymers With Different Spin Ground States

    Get PDF
    Organic semiconductors with high-spin ground states are fascinating because they could enable fundamental understanding on the spin-related phenomenon in light element and provide opportunities for organic magnetic and quantum materials. Although high-spin ground states have been observed in some quinoidal type small molecules or doped organic semiconductors, semiconducting polymers with high-spin at their neutral ground state are rarely reported. Here we report three high-mobility semiconducting polymers with different spin ground states. We show that polymer building blocks with small singlet-triplet energy gap (ΔES-T) could enable small ΔES-T gap and increase the diradical character in copolymers. We demonstrate that the electronic structure, spin density, and solid-state interchain interactions in the high-spin polymers are crucial for their ground states. Polymers with a triplet ground state (S = 1) could exhibit doublet (S = 1/2) behavior due to different spin distributions and solid-state interchain spin-spin interactions. Besides, these polymers showed outstanding charge transport properties with high hole/electron mobilities and can be both n- and p-doped with superior conductivities. Our results demonstrate a rational approach to obtain high-mobility semiconducting polymers with different spin ground states

    Phospho-proteomic analysis of mantle cell lymphoma cells suggests a pro-survival role of B-cell receptor signaling

    Get PDF
    BACKGROUND: Mantle cell lymphoma (MCL) is currently an incurable entity, and new therapeutic approaches are needed. We have applied a high-throughput phospho-proteomic technique to MCL cell lines to identify activated pathways and we have then validated our data in both cell lines and tumor tissues. METHODS: PhosphoScan analysis was performed on MCL cell lines. Results were validated by flow cytometry and western blotting. Functional validation was performed by blocking the most active pathway in MCL cell lines. RESULTS: PhosphoScan identified more than 300 tyrosine-phosporylated proteins, among which many protein kinases. The most abundant peptides belonged to proteins connected with B-cell receptor (BCR) signaling. Active BCR signaling was demonstrated by flow cytometry in MCL cells and by western blotting in MCL tumor tissues. Blocking BCR signaling by Syk inhibitor piceatannol induced dose/time-dependent apoptosis in MCL cell lines, as well as several modifications in the phosphorylation status of BCR pathway members and a collapse of cyclin D1 protein levels. CONCLUSION: Our data support a pro-survival role of BCR signaling in MCL and suggest that this pathway might be a candidate for therapy. Our findings also suggest that Syk activation patterns might be different in MCL compared to other lymphoma subtypes

    FGFR3 Activates RSK2 to Mediate Hematopoietic Transformation through Tyrosine Phosphorylation of RSK2 and Activation of the MEK/ERK Pathway

    Get PDF
    SummaryTo better understand the signaling properties of oncogenic FGFR3, we performed phospho-proteomics studies to identify potential downstream signaling effectors that are tyrosine phosphorylated in hematopoietic cells expressing constitutively activated leukemogenic FGFR3 mutants. We found that FGFR3 directly tyrosine phosphorylates the serine/threonine kinase p90RSK2 at Y529, which consequently regulates RSK2 activation by facilitating inactive ERK binding to RSK2 that is required for ERK-dependent phosphorylation and activation of RSK2. Moreover, inhibition of RSK2 by siRNA or a specific RSK inhibitor fmk effectively induced apoptosis in FGFR3-expressing human t(4;14)-positive myeloma cells. Our findings suggest that FGFR3 mediates hematopoietic transformation by activating RSK2 in a two-step fashion, promoting both the ERK-RSK2 interaction and subsequent phosphorylation of RSK2 by ERK

    Proposed Modification of Nodal Staging as an Alternative to the Seventh Edition of the American Joint Committee on Cancer Tumor-Node-Metastasis Staging System Improves the Prognostic Prediction in the Resected Esophageal Squamous-Cell Carcinoma

    Get PDF
    Introduction:The 7th American Joint Committee on Cancer (AJCC) tumor-node-metastasis staging system for esophageal cancer defined N classification based on the number of metastatic lymph nodes (LNs). However, this classification might neglect the extent of LNs metastasis. This study aimed to revise N classification based on the extent of LNs metastasis and propose a modification to the current AJCC staging system for better representing the prognostic characteristics of Chinese esophageal squamous-cell carcinoma (ESCC).Methods:We retrospectively reviewed 1993 ESCC patients who underwent curative resection. The proposed N categories based on the number of LNs metastasis stations were compared with the current staging system by univariate and multivariate Cox regression analyses. Homogeneity, discriminatory ability, and monotonicity of gradients of two staging systems were compared using likelihood ratio χ2 statistics and Akaike information criterion calculations.Results:The survival differences were not significant for N2 versus N3 category (p = 0.231) and stages IIIB versus IIIC (p = 0.713) based on the 7th AJCC staging system. When the modified staging system was adopted, the survival difference for N2 versus N3 and IIIB versus IIIC could be well discriminated. Statistical analysis showed that the modified staging system had higher likelihood ratio χ2 scores and smaller Akaike information criterion values than the 7th AJCC staging system, which represented the optimum prognostic stratification.Conclusions:The modified staging system with the revised N categories based on the number of LNs metastasis stations better predicts the survival of Chinese ESCC population than the 7th AJCC staging system. Further studies are required to confirm this result
    • …
    corecore