2,018 research outputs found

    Impacts of Climate Variability and Human Activities on the Changes of Runoff and Sediment Load in a Catchment of the Loess Plateau, China

    Get PDF
    The objectives of this study are to investigate the changes of runoff and sediment load and their potential influencing factors in the Huangfuchuan catchment. The Mann-Kendall test and accumulative anomaly methods were, respectively, applied to examine the changing trends and abrupt changes. Both annual runoff and sediment load demonstrated significant reduction (p<0.05) with decreasing rates of −3.2 × 106 m3/a and −1.09 Mt/a, respectively. The abrupt changes were detected in 1979 and 1996 for the runoff and sediment load. All the runoff and sediment indices (runoff, sediment load, runoff coefficient, and sediment concentration) exhibited remarkable reduction (p<0.01). The climate variability contributed 24.4% and 25.1% during 1980–1996 and 1997–2010 to annual runoff decrease, respectively, and human activities accounted for the remaining 75.6% and 74.9%. In contrast, changes in precipitation accounted for 43.5% and 20.2% of sediment load reduction during 1980–1996 and 1997–2010, whereas the human activities contributed 56.5% and 79.8%, respectively. The relative contributions from climate variability and human activities to runoff and sediment load changes at annual scale were different from that at flood season scale. Results suggested the dominant role of soil and water conservations in the variation of runoff and sediment load in the catchment

    Stimuli-responsive polymeric prodrug-based nanomedicine delivering nifuroxazide and doxorubicin against primary breast cancer and pulmonary metastasis

    Get PDF
    Functionalized drug delivery systems against malignant lung metastasis of breast cancer have been extensively studied, while metastasis remains a challenging issue. We propose a new strategy to achieve eradication of primary breast cancer cells and inhibition of pulmonary metastasis. A cathepsin B/pH dual-sensitive block copolymer with a molecular weight of 92 kDa was synthesized to conjugate with doxorubicin (DOX). The copolymer-DOX was further loaded with nifuroxazide (NFX) to self-assemble co-prodrug-loaded micelles (CLM). CLM displayed a drug release pattern in response to pH/enzyme dual stimuli and was enzymatically biodegradable. CLM was demonstrated to reduce viability and inhibit migration and invasion of 4T1 murine breast cancer cells in vitro. After i.v. injection of CLM, its nanoscale size and stimuli-responsiveness facilitated delivery of drugs to the tumor site in mice. Enhanced anti-tumor efficacy and great anti-metastatic effects were found in both orthotropic and lung metastasis 4T1 breast cancer mice models. Meanwhile, histological immunofluorescence and immunohistochemical analyses revealed a high level of apoptosis, suppressed expression of matrix metalloproteinases and reduction in MDSCs infiltration, and all these contributed to inhibit pulmonary metastasis. CLM may be explored as a potential nanomedicine against breast cancer metastasis

    Variations in photoprotective potential along gradients of leaf development and plant succession in subtropical forests under contrasting irradiances

    Get PDF
    The successful development of photosynthetic organs is the basis of plant growth and community development. To reveal photo-acclimation to high irradiance in tree species during the course of leaf development and plant succession of subtropical forests, photosynthetic efficiency and photoprotective compounds were analyzed in young and mature leaves of three mid-successional tree species (Castanopsis fissa, Castanopsis chinensis and Schima superba) and three late-successional tree species (Machilus chinensis, Cryptocarya chinensis and Cryptocarya concinna), grown in 100% full sunlight (FL) or 30% of FL (low light, LL). Young leaves of the two species groups exhibited lower chlorophyll (Chl) content, Rubisco content, net photosynthetic rate (Pn), carboxylation efficiency (CE), effective photochemical yield (ΦPSII), photorespiratory electron flow (JO), but higher dark respiration (Rd), and ratios of carotenoids/chlorophylls (Car/Chl), anthocyanins/chlorophylls (Anth/Chl), flavonoids/chlorophylls (Flav/Chl), phenols/chlorophylls (Phen/Chl) and total antioxidant capacity/chlorophylls (TAC/Chl) than those of mature leaves, regardless of growth irradiance. Young leaves of both species groups demonstrated a higher flexibility of Anth/Chl, Flav/Chl, Phen/Chl and TAC/Chl in response to different light conditions than mature leaves. Flav/Chl in young leaves of late-successional group was remarkably higher than that of mid-successional group under the same light conditions. There was a negative correlation between antioxidant-dependent photoprotective potential and photosynthetic efficiency in young and mature leaves of the six tree species grown under either FL or LL. Our results explain partial mechanisms that lie behind the replacement of communities in subtropical forests: highly integrated photoprotective potential allows young leaves of shade-tolerant late-successional species to develop smoothly into mature organs under high irradiance.This work was funded by the National Natural Science Foundation of China (31570398, 31270287). The study was also supported by the key programme of Guangdong Province Natural Science Foundation (2015A030311023)
    • …
    corecore