34,368 research outputs found

    Magnetic-Field Tuning of Light-Induced Superconductivity in Striped La2−x_{2-x}Bax_xCuO4_4

    Full text link
    Optical excitation of stripe-ordered La2−x_{2-x}Bax_xCuO4_4 has been shown to transiently enhance superconducting tunneling between the CuO2_2 planes. This effect was revealed by a blue-shift, or by the appearance of a Josephson Plasma Resonance in the terahertz-frequency optical properties. Here, we show that this photo-induced state can be strengthened by the application of high external magnetic fields oriented along the c-axis. For a 7-Tesla field, we observe up to a ten-fold enhancement in the transient interlayer phase correlation length, accompanied by a two-fold increase in the relaxation time of the photo-induced state. These observations are highly surprising, since static magnetic fields suppress interlayer Josephson tunneling and stabilize stripe order at equilibrium. We interpret our data as an indication that optically-enhanced interlayer coupling in La2−x_{2-x}Bax_xCuO4_4 does not originate from a simple optical melting of stripes, as previously hypothesized. Rather, we speculate that the photo-induced state may emerge from activated tunneling between optically-excited stripes in adjacent planes.Comment: 35 pages, 13 figure

    Hidden Broad Line Seyfert 2 Galaxies in the CfA and 12micron Samples

    Full text link
    We report the results of a spectropolarimetric survey of the CfA and 12micron samples of Seyfert 2 galaxies (S2s). Polarized (hidden) broad line regions (HBLRs) are confirmed in a number of galaxies, and several new cases (F02581-1136, MCG -3-58-7, NGC 5995, NGC 6552, NGC 7682) are reported. The 12micron S2 sample shows a significantly higher incidence of HBLR (50%) than its CfA counterpart (30%), suggesting that the latter may be incomplete in hidden AGNs. Compared to the non-HBLR S2s, the HBLR S2s display distinctly higher radio power relative to their far-infrared output and hotter dust temperature as indicated by the f25/f60 color. However, the level of obscuration is indistinguishable between the two types of S2. These results strongly support the existence of two intrinsically different populations of S2: one harboring an energetic, hidden S1 nucleus with BLR, and the other, a ``pure S2'', with weak or absent S1 nucleus and a strong, perhaps dominating starburst component. Thus, the simple purely orientation-based unification model is not applicable to all Seyfert galaxies.Comment: 5 pages with embedded figs, ApJ Letters, in pres

    Extremely Correlated Fermi Liquid Description of Normal State ARPES in Cuprates

    Full text link
    The normal state single particle spectral function of the high temperature superconducting cuprates, measured by the angle resolved photoelectron spectroscopy (ARPES), has been considered both anomalous and crucial to understand. Here we show that an unprecedentedly detailed description of the data is provided by a spectral function arising from the Extremely Correlated Fermi Liquid state of the t-J model proposed recently by Shastry. The description encompasses both laser and conventional synchrotron ARPES data on optimally doped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}, and also conventional synchrotron ARPES data on the La1.85_{1.85}Sr0.15_{0.15}CuO4_4 materials. {\em It fits all data sets with the same physical parameter values}, satisfies the particle sum rule and successfully addresses two widely discussed "kink" anomalies in the dispersion.Comment: Published version, 5 figs; published 29 July (2011

    Novel magnetic phase in a weakly ordered spin-1/2 chain antiferromagnet Sr2_2CuO3_3

    Full text link
    We present the magnetic phase diagram of a spin-1/2 chain antiferromagnet Sr2_2CuO3_3 studied by ultrasound phase-sensitive detection technique. We observe an enhanced effect of external magnetic field on the ordering temperature of the system, which is in the extreme proximity to the quantum critical point. Inside the N\'eel ordered phase, we detect an additional field-induced continuous phase transition, which is unexpected for a collinear Heisenberg antiferromagnet. This transition is accompanied by softening of magnetic excitation mode observed by electron-spin resonance, which can be associated with a longitudinal (amplitude) mode of the order parameter in a weakly-coupled system of spin-1/2 chains. These results suggest transition from a transverse collinear antiferromagnet to an amplitude-modulated spin density wave phase induced by magnetic field.Comment: 4 pages, 4 figure
    • …
    corecore