1,390 research outputs found

    Transforming time-varying multivariable systems into block companion canonical forms

    Get PDF
    AbstractThe problem of transforming a class of linear time-varying continuous time systems into controllable and observable block companion canonical forms is considered. In terms of system block controllability (observability) matrix, this paper generalizes the results of Shieh et al. [3] and provides systematic and straightforward algorithms for obtaining block companion canonical forms. An example is provided to illustrate this transformation technique

    Fidelity, dynamic structure factor, and susceptibility in critical phenomena

    Get PDF
    Motivated by the growing importance of fidelity in quantum critical phenomena, we establish a general relation between fidelity and structure factor of the driving term in a Hamiltonian through a newly introduced concept: fidelity susceptibility. Our discovery, as shown by some examples, facilitates the evaluation of fidelity in terms of susceptibility using well developed techniques such as density matrix renormalization group for the ground state, or Monte Carlo simulations for the states in thermal equilibrium.Comment: 4 pages, 2 figures, final version accepted by PR

    Fidelity susceptibility and long-range correlation in the Kitaev honeycomb model

    Full text link
    We study exactly both the ground-state fidelity susceptibility and bond-bond correlation function in the Kitaev honeycomb model. Our results show that the fidelity susceptibility can be used to identify the topological phase transition from a gapped A phase with Abelian anyon excitations to a gapless B phase with non-Abelian anyon excitations. We also find that the bond-bond correlation function decays exponentially in the gapped phase, but algebraically in the gapless phase. For the former case, the correlation length is found to be 1/ξ=2sinh1[2Jz1/(1Jz)]1/\xi=2\sinh^{-1}[\sqrt{2J_z -1}/(1-J_z)], which diverges around the critical point Jz=(1/2)+J_z=(1/2)^+.Comment: 7 pages, 6 figure

    Renalase Deficiency in Heart Failure Model of Rats—A Potential Mechanism Underlying Circulating Norepinephrine Accumulation

    Get PDF
    BACKGROUND: Sympathetic overactivity and catecholamine accumulation are important characteristic findings in heart failure, which contribute to its pathophysiology. Here, we identify a potential mechanism underlying norepinephrine accumulation in a rat model of heart failure. METHODOLOGY/PRINCIPAL FINDINGS: Initially, we constructed a rat model of unilateral renal artery stenosis (n = 16) and found that the expression of renalase, a previously identified secreted amine oxidase, was markedly reduced in the ischemic compared to the non-ischemic kidney (protein: 0.295±0.085 versus 0.765±0.171, p<0.05). Subsequently, we utilized an isolated perfused rat kidney model to demonstrate that the clearance rate of norepinephrine decreased with reduction of perfusion flow. On the basis of these findings, we hypothesized the reduced renal blood supply which occurs in heart failure would result in impaired synthesis of renalase by the kidney and consequently reduced degradation of circulating norepinephrine. To verify this, we used a rat model of infarction-induced heart failure (n = 12 per group). In these rats, the flow velocity of renal artery, when measured at four weeks, is obviously lower in the operation group. Renal expression of renalase was reduced (protein: 0.476±0.043 for control, 0.248±0.029 for operation versus 0.636±0.151 for sham-operation) and this was associated with an increase in circulating norepinephrine (0.168±0.016 ng/mL for control, 0.203±0.019 ng/mL for operation versus 0.138±0.008 ng/mL for sham-operation). CONCLUSIONS/SIGNIFICANCE: Renalase expression is influenced by renal blood flow and impaired synthesis of renalase by the kidney may represent a potential mechanism underlying circulating norepinephrine accumulation in heart failure

    Constrain on possible pairing symmetry in a two-orbital model of FeAs-based superconductors

    Full text link
    In this work, we establish a few exact identities through commutation of intra-orbital and inter-orbital on-site pairings with a two-orbital model describing newly discovered FeAs-based superconductors. Applying the conclusion drawn from rigorous relation and physical interpretation, we give constraints on the possible symmetries of the superconducting pairing of the model. Hence the favorable pairings in newly discovered high-temperature oxypnictide superconductors are proposed.Comment: 5 pages, 2 figure

    Fidelity susceptibility, scaling, and universality in quantum critical phenomena

    Full text link
    We study fidelity susceptibility in one-dimensional asymmetric Hubbard model, and show that the fidelity susceptibility can be used to identify the universality class of the quantum phase transitions in this model. The critical exponents are found to be 0 and 2 for cases of half-filling and away from half-filling respectively.Comment: 4 pages, 4 figure
    corecore