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Abstract—The problem of transforming a class of linear time-varying continuous time systems
into controllable and observable block companion canonical forms is considered. In terms of system
block controllability (observability) matrix, this paper generalizes the results of Shieh et al. [3] and
provides systematic and straightforward algorithms for obtaining block companion canonical forms.
An example is provided to illustrate this transformation technique.

1. INTRODUCTION

Research on canonical transformations for the class of linear time-varying systems and their
applications have drawn extensive attention in the last two decades. Various canonical transfor-
mation techniques have been proposed for systems which are uniformly controllable (observable)
and have time-invariant controllability (observability) indices [1-16]. Among these contributions,
Brunovsky [1] led to the determination of controllable canonical transformations for this class of
systems. Ramar and Ramaswami [2] obtained necessary and sufficient conditions for the existence
of controllable block companion canonical form. The transformation of time-varying systems into
block companion canonical forms was also studied by Shieh et al. [3] recently. They showed that
if a time-varying system is uniformly controllable (observable) with its controllability (observabil-
ity) index ¢{= n/p, (dimension of system state)/(number of system input or output)} being an
integer, the time-varying system can be transformed into the block companion canonical forms in
terms of system controllability (observability) matrices. An advantage of the technique provided
by [3] is easy to compute.

Although some other canonical transformation techniques are available for the case of non-
integer ¢ (see for example, {2, 4-6]), the transformation procedures are rather lengthy when the
system order is high due to their computational complexity. Therefore, it is of interest to further
develop other canonical techniques which can retain the computational simplicity of [3] for the
case of non-integer ¢. In this paper a technique for block companion canonical transformation of
time-varying system is presented which is an extension of [3] to the non-integer ¢ cases. Here,
the transformation matrices are derived in terms of block controllability (observability) matrices.
In the case when ¢ is an integer, the technique proposed here reduces to that of [3].

The paper is organized as follows. The mathematic preliminaries and definitions are stated
in Section 2. A method for controllable block companion canonical transformation in terms
of block controllability matrix is given in Section 3. An observable block companion canonical
transformation in terms of block observability matrix is extended in Section 4. An example is
presented in Section 5 to illustrate the proposed transformation technique.

2. PRELIMINARIES AND DEFINITIONS

In this section we introduce some notations and definitions which will be used in the later
development. All the matrices considered in this paper are real. The set of p X ¢ matrices will
be denoted as RP*?, and the set of column vectors with p components as R?,
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The linear time-varying continuous system to be considered in this paper is described by the
following equations

#(t) = A(t)z(t) + B(t)u(t), (12)
y(t) = C(t)=(?), (1b)

where t € [0,00) is the continuous time variable, z(t) € R” is the state vector, u(t) € R” is the
input vector, y(t) € R™ is the output vector, and A(t) € R"*", B(t) € R"*" and C(t) € R™*"
are time-varying matrices.

Let the matrix differential operators J[-] and L[] be defined as

IM()] = AOM() - FME), (22)
LIP(1)] = P(O)AG) + 3 P(O) (2b)

for any matrices M(t) € R**P and P(t) € R?*" differentiable up to sufficiently high order, and

M) = I M),
=J-J---JM(2)], (3a)
j times
U [M(@)] = L/ [P@)),

=L.L---L[P®)), (3b)
L.L.L

j times
for j =1,2,.... Also define

M) = M),
LO[P(t)] = P(t).

In terms of matrix operators J[:] and L[], the controllability matrix W*(t) and observability
matrix W°(t) of system (1) can then be defined as

we(t) = 3°[B®)] I'[BQ)] ... 3" [BE)), (4a)
we(t) = (L[C@)” L el ... L e@l)”, (4b)

respectively.
It is well known [17] that system (1) is uniformly controllable (observable) if and only if

Rank(W¢(t))(Rank(W°(t))) =n for all t € [0,0c0).

Unlike the time-invariant case, the definition of controllability (observability) for time-varying
systems are much more complicated, and readers are referred to Chapter 5 of Chen [17] for various
definitions. Here, in order to develop our canonical transformation technique, the following
definitions are introduced.

DEFINITION 1. Under the assumption that system (1) is uniformly controllable (observable),
if there exists a unique (n x n) submatrix in W¢(t) (W°(t)) that is non-singular for all ¢t €
[0,00), then We(t) (W°(t)) is said to have a time-invariant controllability (observability) basis.
A uniformly controllable (observable) continuous system whose controllability (observability)
matrix has a time-invariant basis is said to have time-invariant controllability (observability)
indices on [0, 00).

For a uniformly controllable (observable) system which has time-invariant controllability (ob-
servability) indices, the concept of block controllability (observability) is important in developing
the block companion canonical transformation technique and is defined below.
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DEFINITION 2. Let o be the largest non-negative integer which is less than or equal to n/r, and
B¢ =n—a’r, 0<p<r,
7 =r-p, 0<y°<r,
partition B(t) in two blocks as
B(t) = (B1(t) Ba(1)), (5a)
where B;(t) € R**7°, By(t) € R**#°. Then system (1) is said to be block controllable on [0, 00)
if
We(t, o) = (3°[By(1)] 3%(B2()] ... I [Ba(1)] I (Bo(1)] I¥[B2(1)]),  (5b)

has full rank, and
span(3°[B1(t)), 3°[Ba(t)], --., I Bu(®)], I*° " [Ba()]) 2 span{I*[By(1)]}, (5¢)

for all ¢ € [0, 00).
Parallel to Definition 2, we also have

DEFINITION 3. Let C(t) be partitioned as

o0 =(5): o)
then system (1) is said to be block observable on [0, 00) if
LO[C1(1)]
L[C()]
We(t,a’) = Lao_oicl @) ) (6b)
L1 [Cy(1)]
L [Cy(2)]
has full rank, and
LO[Cy(2)]
L°[Cy(8)]
row span : D row span{L* [C1(t)]}, (6¢)

L“:_ltc1 )
Lo -1 [Co(2)]

for all ¢ € [0,00), where a° is the largest non-negative integer which is less than or equal to n/m,

B°=n—am, 0<B°<m,
7" =m-pg°, 0<y°<m,

and Cl(t) € R7°x", Cz(t) € RA°xn,
In our technique the following assumption for system (1) is required.
Assumption 1. System (1) is block controllable (observable) and satisfies the following condi-
tions:
(i) 4:A(t), & B(t) and $:C(t) for 0 < i < n— 1 are defined and bounded for all t € [0, c0);
(ii) Rank(B(t)) = r and Rank(C(t)) = m for all t € [0, 00).
Without confusion, we use a, 3, v and p for a®, ¢, ¥¢ and p¢ in Section 3, and for &®, 3°, +°

and p° in Section 4, respectively. Sometimes we also drop the parameters in the parentheses for
simplicity.
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3. CONTROLLABLE BLOCK COMPANION FORMS

The technique for controllable block companion canonical transformation is first presented in
this section in terms of block controllability matrix (5a). The transformed system is described
by

z°(t) = A°()z°(t) + B°(t)u(?), (7a)
¥o(t) = C°(1)°(2), (7b)

here A¢(t), B¢(t) have the following canonical structure

0 Oy Is Opy Ogp ... Opy Opp
Oyp Oyy Oy Iy Oyp oo Oyy  Oyp
AS(t) = : : : : ; : : : (7¢)
06 Osy Opps Oy Ops ... Opy Ip
Af,l ‘1:,2 <1:,3 Ai,4 A‘I:,S ce (l:,p Ai,p+1
§,1 52 5,3 A§,4 A§,5 Ag,p Ag,p+1
0s,y Opp
01,7 Ov.ﬂ
B=| ¢ i, (1d)
0y 0p,
I-v 0‘7,ﬁ
Oy Ip

where p = 2a, 0, , is the p by ¢ zero matrix, I, is the pth order identity matrix, and

S,ER™P Az eRFXP, fori<p+1odd,
Af; ERTY, Aj; € RPX7, for i < p+1 even,

are time-varying submatrices. The transformation of z(t) into £°(t) is defined by a non-singular
matrix

2°(t) = N()z(t). (8)

Substituting (8) into (1) and comparing with (7), results in the following matrix equations

AS(t) = N AR)N@) ™ + Ne@)(Ve() ™, (9a)

Be(t) = N°(t)B(t), (9b)
and

Ce(t) = C(t)(N°(t))~ L. (9¢)

Then the determination of N°(¢) can be stated as the following theorem.

THEOREM 1. If system (1) is block controllable, then there exists a non-singular transformation
matrix N¢(t)
Ne = ((NE)T (N5)T ... (Ng_)T (V)T (Npy))T (10)

where
Nf € RP*™, for i < p+1 odd,
Nf € RY*", fori < p+1 even.

Determined by
Nf=(05y 05,5 ... Opp Op Ig)(W)™H, (11a)
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Nf = (01,7 01.&9 I'v 07,5 Af,p+1)(wc)—l: (llb)

Nf=L[N{,] for3<i<p+], (11¢)

which transforms system (1) into equivalent controllable block companion canonical structure
(7).

ProoF. The proof is divided into two parts. First we need to show that matrix N expressed
by (11) is the matrix which transforms (1) into canonical structure (7). In accordance with
Definition 2, the block controllability matrix can be written as

Wf = Bl: W2c = BZ) (12&)

and
WE=Wi,A-We,  for3<i<p+1odd, (12b)
WP = WE,A— Wi, for 4 <i< p+2even. (12¢)

Postmultiply N¢ on both sides of (9a), and then substitute (10) and (7¢)—(7d) into (9a)—(9b),
respectively, which yield (11¢c)~(11d) and

o+l

NiA+Ng =Y ANy, (13a)
=1
) p+1
Nig A+ Nep =Y AgilNg, (13b)
i=1
NiBi =0pq; NyB; =0g,5,
N3Bi = 0y, N3B3 =0y,
N3B1 = 0p,4; N3B; = 0p,p,
N{By = 0y5; N{B; =0y,
(13¢)
N;_1B1=0pg4; Nj_1Ba=0p,
NiBi =1L NEBy =0y,
Npy1Bi=0psy; Ny Ba=1Is.
Postmultiply (13a) by B; and B, respectively, and consider (13c) we get
A1, =[NfA+ NE)By,
= N:[AB, ~ Bi] + [N{B; + N:Bi] (14a)

=N;W§,

A1p41 =[NSA+ N{]By,
= N{[AB;y ~ By] + [N:B2 + N: B (14b)
= NWE.
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Substituting (12) and (11c)~(11d) into (13c) and (14), after some manipulations we can obtain
the following chain of equations

NiBy = 0p,y; N3By = 0,9,
NiB; = 0g,4; N3 By = 0Oy5,
N{Ws3 + £INTB1] = 0p,y; N3Ws5 + -}[N;Bl] = Oy

: (15)
NiW,_1 + %[waf-sl =0p,4; NJW,_, + %[wa,f—a] =1,
NiW, + SINfW,_51 = 0p,8;  N5W; + SINsWs_5] = 04,
W+1+d¢[N1cW§-1]=0ﬁ,v; W+1+ dt[Nz —1] = A1 P
NiW;,s + %[N{W;] = Ig; NW i a + a:[N2W]—A1,p+1-

Considering the property of a block controllable system, it can be seen that W7, is linearly
dependent on W§, for j = 1,...,p. Therefore the equations with W, in (15) can be omitted.
Solving (15) from top to bottom, recursively, it follows that

NiWy = 0,45 N3WT = 0y,4,
NiW3 =0p8;  N3W7 =04,
NiW5 = 0g,4; N3W5 = 0y,
NiW{ =0p8;  N3Wi =04,

N1W ~1=0p,; N3W,

P p—l "'I‘Y’
NiW; =0p5;  N3W; =04,

NIWp+2 = Iﬂ: N2Wp+2 —Al o+l
Arrange above equations in vector form we obtain
NiW® =(0p4 Og,p --- 0,5 O,y Ip), (16a)
N;WE = (Oyy O - Iy Oy A5 p41)- (16b)

Since (1) is block controllable, for an arbitrarily assigned submatrix A§ ,.,, Nf and Nj are
uniquely determined by (11a) and (11b).
Second we need to show that (N¢)~! always exists. Similarly to the method of [3], let

NEWS  NiWS ... N§WE,  N§WS  NiWE,,
NSWE  NWE ... NSWeL,  NEWE  NSWe,

P = NW¢® = : : : : :
NEy W NS W5 ... NSLWE, NSWe NS, We,,
Fewe  fews L wewt D fewd ewe
NLWe NSwWs ... NeL,We  No,We N We,,

From the property of block controllability and Equation (12) and (15)—(16), it can be easily
shown that the n X n matrix P has the following structure

(05,7 Os Opy 0 ... Opy 05 Ip
Oy Oyp 0y Oyp ... I, Oyp x

Oy 0 Opy Op ... Opy Is X

Oy Oy Iy Oyp
Osy 0 Opy Ip
\ I Oy x X

Oy I x X

X e -
== ==
R R e
N
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where the x entries in P matrix are tlme-va.rymg possibly nonzero block submatrices with com-
patible dimensions. From the structure of P, it is clear that the determinant value of P is +1,
for all ¢t € [0,00). Hence

(Nc)—l = WcP—l’
exists for all ¢ € [0, 00). B

Summarize the result of this section, the algorithms of controllable block companion canonical
transformations for time-varying block controllable systems is given below.

ALGORITHM 1.

Step 1: Find the block controllable matrix We(t,a¢) as (5b).
Step 2: Find the transformation matrix by:
(i) Partition matrix N °(t) as (10);
(i) Compute Nf(t),fori=1,...,p+1, by (11).
Step 3: Compute (N¢(t))~! and N°(t).
Step 4: Transform original system (1) into controllable block companion canomcal form (7) by

(9)-

4. OBSERVABLE BLOCK COMPANION CANONICAL FORMS

If system (1) is block observable, the argument of Section 3 can be easily extended to the
transformation into observable block companion canonical form which can be described by

z°(t) = A°(t)z°(t) + B°(t)u(t), (17a)
y(t) = C°(t)=°(2), (17b)
where v
°(t) = (N°(1)'=(t), (17¢)
(Os8 Osy Opp ... Opy Opp A7, 12 )
Oyp Oyy Oyp oo Oyy Oyp A3, A3 s
Ofp OIﬂn gﬂ,ﬂ oo Opy 8p,p j&;,l 45,5
.8 ¥ v8 oo Oy .8 4,1 4,2
A°(t) = Op,p Opy Is ... Opy Opp A3,  AZ, |- (17d)
01,;3 Oy Oy oo Lyy Oyp A2, Al 2
\Oss 05y Opp ... Opy Ip Asy11 Aptr2
0 0 0 0 ... 0 I, 0
co= (8 Yry Ynp VYyy v by mﬁ), 17e
(0/3,/3 Opoy Opp Oy ... Opp Oy Ip (17€)
p = 2a° and

AL ERPXY A2, € RP*P| for i< p+1odd,
A} ER™Y, A2, € R™P, fori<p+1even,

are time-varying submatrices. The matrices of original system (1) and observable canonical
system (16) have the following relations

A°(t) = (N°(t)) AN (t) — (N°(8))"IN°(2), (18a)

C°(t) = CRIN°(1), (18b)
and

B°(t) = (N°(t))"' B(2). (18c)

The determination of non-singular transformation N°(t) can be stated as the following theorem.

CAWA 21:2/3-€
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THEOREM 2. If system (1) is block observable, then there exists a non-singular transformation
matrix N°(t)
N°=(NY N3 ... N;_y N; Noyy) (19)

where
NP eR™P fori< p+1odd,

N? € R™™7, for i < p+ 1 even,

determined by
0y,8
03,5
Ne=Wo)t | |, (20a)
0s,5
04,8
Ip

0,y

Oﬂn
Ng = (W°)—1 , (20b)

Iy

Oﬂ,"r

Aft1,
and

Ny =J[Nf,] for3<i<p+l, (20c)

which transforms system (1) into equivalent observable block companion canonical structure (16).

PrOOF. The proof is similar to that of Theorem 1. Premultiply N° on both sides of (17a) and
then transpose both sides of (17a) and (17b) we can get

(42T (N°)T = (N°)T AT — (N°)T, (21a)
(€)= (N CT, (21b)

Then the argument in this theorem is transferred to the argument of Theorem 1. By the same
procedure, the non-singular transformation matrix then is obtained as (20). I

The algorithm of observable block companion canonical transformations for time-varying block
observable systems is similarly given below.

ALGORITHM 2.

Step 1: Find the block observable matrix W°(t, a°) as (6b).
Step 2: Find the transformation matrix by:
(i) Partition matrix N°(t) as (19);
(ii)Compute N?(t), fori=1,...,p+ 1, by (20).
Step 8: Compute (N°())~! and N°(t).
Step 4: Transform original system (1) into observable block companion canonical form (16) by

(17).

Remark 1. To use Algorithm 1 or Algorithm 2 only requires that the system (1) be block

controllable (observable). However, for special case that if system (1) is block controllable (ob-
servable) and ¢ is an integer, 8 = 0 and ¥ = r(m), the algorithm reduces to that of [3]. In this
way, the canonical transformation technique of [3] is generalized.
Remark 2. The transformation procedure is characterized by an arbitrarily assigned submatrix
Af ,+1 (A%41,1). This implies that the transformations are not unique. For a special case that
fi/r(m) is an integer, the free submatrix A ,,, (A%,,,) disappears and the transformation will
be unique. More discussions on the non-uniqueness and the use of this property were given by
Fahmy and O’Reilly [18].
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5. EXAMPLE
Transform
0 0 0 0 1 0 1
0 1 0 0 -1 1 0
z(t)=10 0 0 1 1 Jz@)+ | -1 0] u®),
1 et et 0 0 0 0
0 0 0 -1 0 0 0
0 01 01
y(t) = (0 110 0) z(t),

into: i) Controllable block companion canonical form, ii) Observable block companion canonical
form.

i) Controllable block companion canonical form

Step 1. The block controllable matrix is obtained as

0 1
1
Wwe=1 -1
0
0

oo oo

COoOO MmO

O = O OO0
O = OO

and

(Wc)—l =

OO =O
OO = OO
|
OO&—'OH
O OO0
o -0

Step 2. By (11) and specify As (k) = 1, we get
(0 0 o0
0 1 1
Neg)=|0o o0 o
\0 1 0
1 et e

0 —et
0 0
(Ne@)t=] 0 1
0
0

\ 21

O = -0 O

[ == B e R

Step 3. By (9), it is computed

A%(t) =

OO O
OO OO
O = =00

-1 —et 0 et

een_ (-1 11 =10
Cm‘(o 10 0 0'
i) Observable block companion canonical form

Step 1. The block observability matrix is obtained as
0

P O O =
Q= O e

0
0 1

we)=]0 o
0 1
1

O OO0

1+e"t et
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and
1 —-1—-¢t* 0 0 1
-1 1 1 00
wegn~t=1| 1 0 -1 00
1 -1 -1 10
0 0 1 00
Step 2. By specify As1(k) =0, we can get
1 0 01 0
01 00 O
N°=}0 -100 11,
0 -1 10 0
0 1 01 -1
10 -1 0 -1
01 0 0 O
(N =]01 0 1 0
00 1 0 1
01 1 0 0
Step 3. Then
0 00 O 0
0 0 0 -1 1
AW=|100 0 14|,
010 1 -1
0 01 0 0

T
o (111 =10
B(t)“<2 01 -1 0) - 8
6. CONCLUSIONS

This paper presents a method for block companion canonical transformation for linear time-
varying continuous systems. Without requiring ¢ to be an integer, the technique developed
here can be applied to all block controllable (observable) linear time-varying systems, and thus
generalized the results of [3]. For the case of non-integer ¢, the parameter in canonical forms
are not unique and depend on the choice of A§ ,., (43,,,:). The canonical transformation
developed in this paper can be applied to the state estimator and eigenvalue assignments for
linear time-varying continuous system. For further research, it is also expected to develop the
block companion canonical transformation techniques for the class of systems which are not
block controllable (observable) or have time-varying controllability (observability) indices. These
aspects are under investigation and will be reported in other papers.
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