13 research outputs found

    Id2 promotes the invasive growth of MCF-7 and SKOV-3 cells by a novel mechanism independent of dimerization to basic helix-loop-helix factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhibitor of differentiation 2 (<it>Id2</it>) is a critical factor for cell proliferation and differentiation in normal vertebrate development. Most of the biological function of Id2 has been ascribed to its helix-loop-helix motif. Overexpression of Id2 is frequently observed in various human tumors, but its role for invasion potential in tumor cells is dispute. We aimed to reveal the role of Id2 in invasion potential in poorly invasive and estrogen receptor α (ERα)-positive MCF-7 and SKOV-3 cancer cells.</p> <p>Methods</p> <p>MCF-7 and SKOV-3 cells were stably transfected with the wild-type, degradation-resistant full-length or helix-loop-helix (HLH)-deleted Id2, respectively. Protein levels of Id2 and its mutants and E-cadherin were determined by western blot analysis and mRNA levels of Id2 and its mutants were determined by RT-PCR. The effects of Id2 and its mutants on cell proliferation were determined by [<sup>3</sup>H]-thymidine incorporation assay and the 3- [4, 5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) dye method. The <it>in vitro </it>invasion potential of cells was evaluated by Transwell assay. Cell motility was assessed by scratch wound assay. The promoter activity of <it>E-cadherin </it>was determined by cotransfection and luciferase assays.</p> <p>Results</p> <p>Ectopic transfection of the wild-type Id2 markedly increased the protein and mRNA expression of <it>Id2 </it>in MCF-7 and SKOV-3 cells; the protein level but not mRNA level was further increased by transfection with the degradation-resistant Id2 form. The ectopic expression of Id2 or its mutants did not alter proliferation of either MCF-7 or SKOV-3 cells. Transfection of the wild-type Id2 significantly induced the invasion potential and migratory capacity of cells, which was further augmented by transfection with the degradation-resistant full-length or HLH-deleted Id2. E-cadherin protein expression and transactivation of the proximal E-cadherin promoter were markedly suppressed by the degradation-resistant full-length or HLH-deleted Id2 but not wild-type Id2. Ectopic expression of E-cadherin in MCF-7 and SKOV-3 cells only partially blunted the invasion potential induced by the degradation-resistant HLH-deleted Id2.</p> <p>Conclusion</p> <p>Overexpression of Id2 in ERα-positive epithelial tumor cells indeed increases the cells' invasive potential through a novel mechanism independent of dimerization to basic helix-loop-helix factors. E-cadherin contributes only in part to Id2-induced cell invasion when Id2 is accumulated to a higher level in some specific cell types.</p

    Assessing the clinical utility of multi-omics data for predicting serous ovarian cancer prognosis

    No full text
    Ovarian cancer (OC) is characterised by heterogeneity that complicates the prediction of patient survival and treatment outcomes. Here, we conducted analyses to predict the prognosis of patients from the Genomic Data Commons database and validated the predictions by fivefold cross-validation and by using an independent dataset in the International Cancer Genome Consortium database. We analysed the somatic DNA mutation, mRNA expression, DNA methylation, and microRNA expression data of 1203 samples from 599 serous ovarian cancer (SOC) patients. We found that principal component transformation (PCT) improved the predictive performance of the survival and therapeutic models. Deep learning algorithms also showed better predictive power than the decision tree (DT) and random forest (RF). Furthermore, we identified a series of molecular features and pathways that are associated with patient survival and treatment outcomes. Our study provides perspective on building reliable prognostic and therapeutic strategies and further illuminates the molecular mechanisms of SOC.Impact statement What is already known on this subject? Recent studies have focussed on predicting cancer outcomes based on omics data. But the limitation is the performance of single-platform genomic analyses or the small numbers of genomic analyses. What do the results of this study add? We analysed multi-omics data, found that principal component transformation (PCT) significantly improved the predictive performance of the survival and therapeutic models. Deep learning algorithms also showed better predictive power than did decision tree (DT) and random forest (RF). Furthermore, we identified a series of molecular features and pathways that are associated with patient survival and treatment outcomes. What are the implications of these findings for clinical practice and/or further research? Our study provides perspective on how to build reliable prognostic and therapeutic strategies and further illuminates the molecular mechanisms of SOC for future studies

    Survival outcomes of abdominal radical hysterectomy, laparoscopic radical hysterectomy, robot-assisted radical hysterectomy and vaginal radical hysterectomy approaches for early-stage cervical cancer: a retrospective study

    No full text
    Abstract Background This study compared the survival outcomes of abdominal radical hysterectomy (ARH) (N = 32), laparoscopic radical hysterectomy (LRH) (N = 61), robot-assisted radical hysterectomy (RRH) (N = 100) and vaginal radical hysterectomy (VRH) (N = 45) approaches for early-stage cervical cancer to identify the surgical approach that provides the best survival. Methods Disease-free survival (DFS) and overall survival (OS) were calculated using the Kaplan–Meier method, and survival curves were compared using the log-rank test. Results The volume of intraoperative blood loss was greater in the ARH group than in the LRH group, the RRH group or the VRH group [(712.50 ± 407.59) vs. (224.43 ± 191.89), (109.80 ± 92.98) and (216.67 ± 176.78) ml, respectively; P < 0.001]. Total 5-year OS was significantly different among the four groups (ARH, 96.88%; LRH, 82.45%; RRH, 94.18%; VRH, 91.49%; P = 0.015). However, no significant difference in 5-year DFS was observed among the four groups (ARH, 96.88%; LRH, 81.99%; RRH, 91.38%; VRH, 87.27%; P = 0.061). Conclusion This retrospective study demonstrated that ARH and RRH achieved higher 5-year OS rates than LRH for early-stage cervical cancer

    Design, synthesis and biological evaluation of novel 9-N-substituted-13-alkylberberine derivatives from Chinese medicine as anti-hepatocellular carcinoma agents

    No full text
    A series of novel 9-N-substituted-13-alkylberberine derivatives from Chinese medicine were designed and synthesized with improved anti-hepatocellular carcinoma (HCC) activities. The optimal compound 4d showed strong activities against HepG2, Sk-Hep-1, Huh-7 and Hep3B cells with IC values of 0.58-1.15 μM, which were superior to positive reference cisplatin. Interestingly, 4d exhibited over 40-fold more potent activity against cisplatin-resistant HepG2/DPP cells while showing lower cytotoxicity in normal LX-2 cells. The mechanism studies revealed 4d greatly stabilized G-quadruplex DNA leading to intracellular c-MYC expression downregulation, blocked G2/M-phase cell cycle by affecting related p-cdc25c, cdc2 and cyclin B1 expressions, and induced apoptosis by a ROS-promoted PI3K/Akt-mitochondrial pathway. Furthermore, 4d possessed good pharmacokinetic properties and significantly inhibited the tumor growth in the H22 liver cancer xenograft mouse model without obvious toxicity. Altogether, the remarkably biological profiles of 4d both in vitro and in vivo would make it a promising candidate for HCC therapy. [Abstract copyright: Copyright © 2023 Elsevier Ltd. All rights reserved.

    Effect of Mst1 on Endometriosis Apoptosis and Migration: Role of Drp1-Related Mitochondrial Fission and Parkin-Required Mitophagy

    No full text
    Background/Aims: Mitochondrial homeostasis is implicated in the development and progression of endometriosis through poorly defined mechanisms. Mst1 is the major growth suppressor related to cancer migration, apoptosis and proliferation. However, whether Mst1 is involved in endometriosis apoptosis and migration via regulating the mitochondrial function remains to be elucidated. Methods: Expression of Mst1 in endometriosis was examined via western blots. Cellular apoptosis was detected via MTT and TUNEL assay. Gain of function assay about Mst1 was conducted via adenovirus over-expression. Mitochondrial functions were evaluated via mitochondrial membrane potential JC-1 staining, ROS flow cytometry analysis, mPTP opening assessment and immunofluorescence of HtrA2/Omi. The mitophagy activity were examined via western blots and immunofluorescence. Results: First, we found that Mst1 was significantly downregulated in the ectopic endometrium of endometriosis compared to the normal endometrium. However, the recovery of Mst1 function was closely associated with the inability of endometrial stromal cells (ESCs) to migrate and survive. A functional study indicated that regaining Mst1 enhanced Drp1 post-transcriptional phosphorylation at Ser616 and repressed Parkin transcription activity via p53, leading to mitochondrial fission activation and mitophagy inhibition. Excessive Drp1-related fission forced the mitochondria to liberate HtrA2/Omi into the cytoplasm. Moreover, Mst1-induced defective mitophagy evoked cellular oxidative stress, energy metabolism and calcium overload. Through excessive mitochondrial fission and aberrant mitophagy, Mst1 launched caspase 9-related mitochondrial apoptosis and abrogated F-actin/lamellipodium-dependent cellular migration. Notably, we also defined NR4A/miR181c as the upstream signal for Mst1 dysfunction in endometriosis. Conclusion: Collectively, our results comprehensively described the important role of the NR4A-miR181c-Mst1 pathway in endometriosis, which handled mitochondrial apoptosis and F-actin/ lamellipodium-based migration via the regulation of Drp1-related mitochondrial fission and Parkin-required mitophagy, with a potential application in endometriosis therapy by limiting ESCs migration and promoting apoptosis

    A Comprehensive Empirical–Computational Study of Diverse Het-eroarene Stacking under Physiological Conditions

    No full text
    Heteroaromatic stacking interactions help stabilize protein tertiary structure and are important in drug binding, supramolecu-lar chemistry, and materials science. Although diverse computational and experimental approaches have been utilized to study these interactions, a broadly useful protein–ligand model system has yet to emerge, despite laudable efforts by Diederich and co-workers in this vein. Here we studied thirty synthetic ligands that present diverse heteroarene probes for stacking between symmetry-related tyrosine residues at the dimer interface of procaspase-6. We demonstrate crystallograph-ically that stacking geometries are highly conserved across the ligand test set and show with high-accuracy computations that differences in ligand binding free energies are primarily attributable to the relative strength of the stacking interactions. The empirical results are discussed in light of recent computational studies of these interactions, including the effects of torsional strain, heteroarene tautomeric state, and co-axial orientation of stacking groups. Overall, this study provides an extensive dataset of empirical and high-level computed binding energies in a versatile new protein–ligand system highly amenable to studies of other intermolecular interactions
    corecore