12 research outputs found

    Electron Impact Ionization Close to the Threshold: Classical Calculations

    Full text link
    In this paper we present Classical Trajectory Monte Carlo (CTMC) calculations for single and multiple electron ionization of Argon atoms and ions in the threshold region. We are able to recover the Wannier exponents a for the power-law behavior of the cross section s versus excess energy: the exact value of the exponent as well as the existence of its saturation for multiple ionization appear to be related to how the total binding energy is shared between target electrons.Comment: 9 pages. To be published in Journal of Physics

    Accurate and rapid antibiotic susceptibility testing using a machine learning-assisted nanomotion technology platform.

    Get PDF
    Antimicrobial resistance (AMR) is a major public health threat, reducing treatment options for infected patients. AMR is promoted by a lack of access to rapid antibiotic susceptibility tests (ASTs). Accelerated ASTs can identify effective antibiotics for treatment in a timely and informed manner. We describe a rapid growth-independent phenotypic AST that uses a nanomotion technology platform to measure bacterial vibrations. Machine learning techniques are applied to analyze a large dataset encompassing 2762 individual nanomotion recordings from 1180 spiked positive blood culture samples covering 364 Escherichia coli and Klebsiella pneumoniae isolates exposed to cephalosporins and fluoroquinolones. The training performances of the different classification models achieve between 90.5 and 100% accuracy. Independent testing of the AST on 223 strains, including in clinical setting, correctly predict susceptibility and resistance with accuracies between 89.5% and 98.9%. The study shows the potential of this nanomotion platform for future bacterial phenotype delineation

    A gut bacterial signature in blood and liver tissue characterizes cirrhosis and hepatocellular carcinoma

    Get PDF
    BackgroundHCC is the leading cause of cancer in chronic liver disease. A growing body of experimental mouse models supports the notion that gut-resident and liver-resident microbes control hepatic immune responses and, thereby, crucially contribute to liver tumorigenesis. However, a comprehensive characterization of the intestinal microbiome in fueling the transition from chronic liver disease to HCC in humans is currently missing.MethodsHere, we profiled the fecal, blood, and liver tissue microbiome of patients with HCC by 16S rRNA sequencing and compared profiles to nonmalignant cirrhotic and noncirrhotic NAFLD patients.ResultsWe report a distinct bacterial profile, defined from 16S rRNA gene sequences, with reduced α-and β-diversity in the feces of patients with HCC and cirrhosis compared to NAFLD. Patients with HCC and cirrhosis exhibited an increased proportion of fecal bacterial gene signatures in the blood and liver compared to NAFLD. Differential analysis of the relative abundance of bacterial genera identified an increased abundance of Ruminococcaceae and Bacteroidaceae in blood and liver tissue from both HCC and cirrhosis patients compared to NAFLD. Fecal samples from cirrhosis and HCC patients both showed a reduced abundance for several taxa, including short-chain fatty acid-producing genera, such as Blautia and Agathobacter. Using paired 16S rRNA and transcriptome sequencing, we identified a direct association between gut bacterial genus abundance and host transcriptome response within the liver tissue.ConclusionsOur study indicates perturbations of the intestinal and liver-resident microbiome as a critical determinant of patients with cirrhosis and HCC

    Charge transfer dynamics in Ar+ + CO

    No full text
    Differential cross sections for the charge transfer reaction between Ar(+)and CO have been measured using three-dimensional velocity map imaging in a crossed beam setup at the two relative collision energies 0.55 and 0.74 eV. We find dominant forward scattering with CO(+)product ions predominantly in the vibrational levels=6,7 of the electronic ground state X. This is indicative of a direct resonant mechanism for the two argon spin-orbit states. At both collision energies also an isotropic distribution with product ions exhibiting high internal excitation is observed. This is more pronounced at the higher collision energy, where the first electronically excited state Abecomes accessible. We conclude that the A-state is partially populated by the product ions at 0.74 eV collision energy and suggest that the isotropic distribution stems from the formation of a charge-transfer complex, in concurrence with previously performed studies. [GRAPHICS]
    corecore